001034091 001__ 1034091
001034091 005__ 20241218210702.0
001034091 037__ $$aFZJ-2024-06912
001034091 041__ $$aEnglish
001034091 1001_ $$0P:(DE-Juel1)185878$$aÜsten, Ezel$$b0$$ufzj
001034091 1112_ $$aTraffic and Granular Flow$$cLyon$$d2024-12-02 - 2024-12-05$$gTGF 2024$$wFrance
001034091 245__ $$aDynamic Motivation: Integrating Psychological Theories of Motivation in Pedestrian Modeling for Bottleneck Scenarios
001034091 260__ $$c2024
001034091 3367_ $$033$$2EndNote$$aConference Paper
001034091 3367_ $$2DataCite$$aOther
001034091 3367_ $$2BibTeX$$aINPROCEEDINGS
001034091 3367_ $$2DRIVER$$aconferenceObject
001034091 3367_ $$2ORCID$$aLECTURE_SPEECH
001034091 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1734515268_15481$$xAfter Call
001034091 520__ $$aModeling pedestrian entrance scenarios is a central focus in the field of pedestrian dynamics, yet existing models, rooted in physics, have limitations when it comes to incorporating psychological aspects of individual behavior. This study aims to initiate a discourse on the integration of models of motivational changes into models for operational movement of pedestrians. Motivation is believed to be one of the most apparent psychological drivers of movement behavior in pedestrian environments, capable of significantly influencing crowd dynamics. Previous approaches have often employed a simplified binary categorization of motivation, classifying agents as either highly motivated or lowly motivated [1]. This simplification, while useful in many contexts, fails to capture the complexity of motivation, whichis influenced by a multitude of intrinsic and environmental factors. We introduce two critical dimensions of motivation: heterogeneity (variations in individual motivation levels within the crowd) and dynamism (fluctuations in motivation levels during goal pursuit) to establisha foundation for modeling motivation in entrance scenarios. The basis for these dimensions are experiments with pedestrians where the intensity of the forward movement was categorized using observation methods. The resulting data sets demonstrate both the dynamics and heterogeneity of the forward movement of the individual agents [2, 3].
001034091 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001034091 7001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b1$$ufzj
001034091 8564_ $$uhttps://tgf2024.sciencesconf.org/561454/document
001034091 8564_ $$uhttps://juser.fz-juelich.de/record/1034091/files/TGF-Mohcine_Ezel_04-12-2024.pptx$$yRestricted
001034091 909CO $$ooai:juser.fz-juelich.de:1034091$$pVDB
001034091 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185878$$aForschungszentrum Jülich$$b0$$kFZJ
001034091 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b1$$kFZJ
001034091 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001034091 9141_ $$y2024
001034091 920__ $$lyes
001034091 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
001034091 980__ $$aconf
001034091 980__ $$aVDB
001034091 980__ $$aI:(DE-Juel1)IAS-7-20180321
001034091 980__ $$aUNRESTRICTED