001034098 001__ 1034098
001034098 005__ 20250203133230.0
001034098 0247_ $$2doi$$a10.1175/BAMS-D-23-0220.1
001034098 0247_ $$2ISSN$$a0003-0007
001034098 0247_ $$2ISSN$$a1520-0477
001034098 0247_ $$2WOS$$aWOS:001382177000003
001034098 037__ $$aFZJ-2024-06919
001034098 082__ $$a550
001034098 1001_ $$0P:(DE-HGF)0$$aGovett, Mark$$b0$$eCorresponding author
001034098 245__ $$aExascale Computing and Data Handling: Challenges and Opportunities for Weather and Climate Prediction
001034098 260__ $$aBoston, Mass.$$bASM$$c2024
001034098 3367_ $$2DRIVER$$aarticle
001034098 3367_ $$2DataCite$$aOutput Types/Journal article
001034098 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736433239_26845
001034098 3367_ $$2BibTeX$$aARTICLE
001034098 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001034098 3367_ $$00$$2EndNote$$aJournal Article
001034098 520__ $$aThe emergence of exascale computing and artificial intelligence offer tremendous potential to significantly advance Earth system prediction capabilities. However, enormous challenges must be overcome to adapt models and prediction systems to use these new technologies effectively. A 2022 WMO report on exascale computing recommends “urgency in dedicating efforts and attention to disruptions associated with evolving computing technologies that will be increasingly difficult to overcome, threatening continued advancements in weather and climate prediction capabilities.” Further, the explosive growth in data from observations, model and ensemble output, and postprocessing threatens to overwhelm the ability to deliver timely, accurate, and precise information needed for decision-making. Artificial intelligence (AI) offers untapped opportunities to alter how models are developed, observations are processed, and predictions are analyzed and extracted for decision-making. Given the extraordinarily high cost of computing, growing complexity of prediction systems, and increasingly unmanageable amount of data being produced and consumed, these challenges are rapidly becoming too large for any single institution or country to handle. This paper describes key technical and budgetary challenges, identifies gaps and ways to address them, and makes a number of recommendations.
001034098 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001034098 536__ $$0G:(DE-Juel-1)ESDE$$aEarth System Data Exploration (ESDE)$$cESDE$$x1
001034098 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001034098 7001_ $$0P:(DE-HGF)0$$aBah, Bubacar$$b1
001034098 7001_ $$0P:(DE-HGF)0$$aBauer, Peter$$b2
001034098 7001_ $$0P:(DE-HGF)0$$aBerod, Dominique$$b3
001034098 7001_ $$0P:(DE-HGF)0$$aBouchet, Veronique$$b4
001034098 7001_ $$0P:(DE-HGF)0$$aCorti, Susanna$$b5
001034098 7001_ $$0P:(DE-HGF)0$$aDavis, Chris$$b6
001034098 7001_ $$0P:(DE-HGF)0$$aDuan, Yihong$$b7
001034098 7001_ $$0P:(DE-HGF)0$$aGraham, Tim$$b8
001034098 7001_ $$0P:(DE-HGF)0$$aHonda, Yuki$$b9
001034098 7001_ $$0P:(DE-HGF)0$$aHines, Adrian$$b10
001034098 7001_ $$0P:(DE-HGF)0$$aJean, Michel$$b11
001034098 7001_ $$0P:(DE-HGF)0$$aIshida, Junishi$$b12
001034098 7001_ $$0P:(DE-HGF)0$$aLawrence, Bryan$$b13
001034098 7001_ $$0P:(DE-HGF)0$$aLi, Jian$$b14
001034098 7001_ $$0P:(DE-HGF)0$$aLuterbacher, Juerg$$b15
001034098 7001_ $$0P:(DE-HGF)0$$aMuroi, Chiasi$$b16
001034098 7001_ $$0P:(DE-HGF)0$$aRowe, Kris$$b17
001034098 7001_ $$0P:(DE-Juel1)6952$$aSchultz, Martin$$b18$$ufzj
001034098 7001_ $$0P:(DE-HGF)0$$aVisbeck, Martin$$b19
001034098 7001_ $$0P:(DE-HGF)0$$aWilliams, Keith$$b20
001034098 773__ $$0PERI:(DE-600)2029396-3$$a10.1175/BAMS-D-23-0220.1$$n12$$pE2385–E2404$$tBulletin of the American Meteorological Society$$v105$$x0003-0007$$y2024
001034098 8564_ $$uhttps://juser.fz-juelich.de/record/1034098/files/bams-BAMS-D-23-0220.1%20%282%29.pdf$$yRestricted
001034098 909CO $$ooai:juser.fz-juelich.de:1034098$$pVDB
001034098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6952$$aForschungszentrum Jülich$$b18$$kFZJ
001034098 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001034098 9141_ $$y2024
001034098 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
001034098 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
001034098 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-19$$wger
001034098 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-19
001034098 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-19
001034098 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-19
001034098 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-19
001034098 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-19
001034098 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bB AM METEOROL SOC : 2022$$d2024-12-19
001034098 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-19
001034098 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-19
001034098 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bB AM METEOROL SOC : 2022$$d2024-12-19
001034098 920__ $$lyes
001034098 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001034098 980__ $$ajournal
001034098 980__ $$aVDB
001034098 980__ $$aI:(DE-Juel1)JSC-20090406
001034098 980__ $$aUNRESTRICTED