001     1034098
005     20250203133230.0
024 7 _ |a 10.1175/BAMS-D-23-0220.1
|2 doi
024 7 _ |a 0003-0007
|2 ISSN
024 7 _ |a 1520-0477
|2 ISSN
024 7 _ |a WOS:001382177000003
|2 WOS
037 _ _ |a FZJ-2024-06919
082 _ _ |a 550
100 1 _ |a Govett, Mark
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Exascale Computing and Data Handling: Challenges and Opportunities for Weather and Climate Prediction
260 _ _ |a Boston, Mass.
|c 2024
|b ASM
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736433239_26845
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The emergence of exascale computing and artificial intelligence offer tremendous potential to significantly advance Earth system prediction capabilities. However, enormous challenges must be overcome to adapt models and prediction systems to use these new technologies effectively. A 2022 WMO report on exascale computing recommends “urgency in dedicating efforts and attention to disruptions associated with evolving computing technologies that will be increasingly difficult to overcome, threatening continued advancements in weather and climate prediction capabilities.” Further, the explosive growth in data from observations, model and ensemble output, and postprocessing threatens to overwhelm the ability to deliver timely, accurate, and precise information needed for decision-making. Artificial intelligence (AI) offers untapped opportunities to alter how models are developed, observations are processed, and predictions are analyzed and extracted for decision-making. Given the extraordinarily high cost of computing, growing complexity of prediction systems, and increasingly unmanageable amount of data being produced and consumed, these challenges are rapidly becoming too large for any single institution or country to handle. This paper describes key technical and budgetary challenges, identifies gaps and ways to address them, and makes a number of recommendations.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Earth System Data Exploration (ESDE)
|0 G:(DE-Juel-1)ESDE
|c ESDE
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bah, Bubacar
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bauer, Peter
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Berod, Dominique
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bouchet, Veronique
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Corti, Susanna
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Davis, Chris
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Duan, Yihong
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Graham, Tim
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Honda, Yuki
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Hines, Adrian
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Jean, Michel
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Ishida, Junishi
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Lawrence, Bryan
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Li, Jian
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Luterbacher, Juerg
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Muroi, Chiasi
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Rowe, Kris
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Schultz, Martin
|0 P:(DE-Juel1)6952
|b 18
|u fzj
700 1 _ |a Visbeck, Martin
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Williams, Keith
|0 P:(DE-HGF)0
|b 20
773 _ _ |a 10.1175/BAMS-D-23-0220.1
|0 PERI:(DE-600)2029396-3
|n 12
|p E2385–E2404
|t Bulletin of the American Meteorological Society
|v 105
|y 2024
|x 0003-0007
856 4 _ |u https://juser.fz-juelich.de/record/1034098/files/bams-BAMS-D-23-0220.1%20%282%29.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1034098
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)6952
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-24
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-19
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b B AM METEOROL SOC : 2022
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-19
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-19
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b B AM METEOROL SOC : 2022
|d 2024-12-19
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21