Home > Publications database > Error mitigation of entangled states using brainbox quantum autoencoders > print |
001 | 1034121 | ||
005 | 20250203103442.0 | ||
037 | _ | _ | |a FZJ-2024-06937 |
100 | 1 | _ | |a Ansari, Mohammad |0 P:(DE-Juel1)171686 |b 0 |u fzj |
245 | _ | _ | |a Error mitigation of entangled states using brainbox quantum autoencoders |
260 | _ | _ | |c 2023 |
336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1734499981_22766 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
336 | 7 | _ | |a preprint |2 DRIVER |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
520 | _ | _ | |a Current quantum hardware is subject to various sources of noise that limits the access to multi-qubit entangled states. Quantum autoencoder circuits with a single qubit bottleneck have showncapability to correct error in noisy entangled state. By introducing slightly more complex structuresin the bottleneck, the so-called brainboxes, the denoising process can take place faster and forstronger noise channels. Choosing the most suitable brainbox for the bottleneck is the result of atrade-off between noise intensity on the hardware, and the training impedance. Finally, by studyingRényi entropy flow throughout the networks we demonstrate that the localization of entanglementplays a central role in denoising through learning. |
536 | _ | _ | |a 5224 - Quantum Networking (POF4-522) |0 G:(DE-HGF)POF4-5224 |c POF4-522 |f POF IV |x 0 |
536 | _ | _ | |a SUPERSPIN - Superconducting Spintronics for Highly Energery Efficient Cryogenic Memory Applications (743791) |0 G:(EU-Grant)743791 |c 743791 |f H2020-MSCA-IF-2016 |x 1 |
700 | 1 | _ | |a Pazem, Josephine |0 P:(DE-Juel1)188287 |b 1 |
909 | C | O | |o oai:juser.fz-juelich.de:1034121 |p openaire |p VDB |p ec_fundedresources |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171686 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5224 |x 0 |
914 | 1 | _ | |y 2024 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-2-20110106 |k PGI-2 |l Theoretische Nanoelektronik |x 0 |
980 | _ | _ | |a preprint |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|