001034171 001__ 1034171
001034171 005__ 20250203133231.0
001034171 0247_ $$2doi$$a10.1002/aesr.202400183
001034171 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06982
001034171 0247_ $$2WOS$$aWOS:001328530600001
001034171 037__ $$aFZJ-2024-06982
001034171 082__ $$a333.7
001034171 1001_ $$00000-0002-1991-6428$$aBhandari, Sabita$$b0$$eFirst author
001034171 245__ $$aExploring the Effect of Ball Milling on the Physicochemical Properties and Oxygen Evolution Reaction Activity of Nickel and Cobalt Oxides
001034171 260__ $$aWeinheim$$bWiley-VCH$$c2024
001034171 3367_ $$2DRIVER$$aarticle
001034171 3367_ $$2DataCite$$aOutput Types/Journal article
001034171 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734166361_311
001034171 3367_ $$2BibTeX$$aARTICLE
001034171 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001034171 3367_ $$00$$2EndNote$$aJournal Article
001034171 520__ $$aBall milling is commonly used to reduce catalyst particle size. However, littleattention is paid to further changes that ball milling can cause to the rest of thecatalysts’ physicochemical properties, which can impact their intrinsic catalyticactivity. The effect of ball milling on the physicochemical properties of NiCoO2 ,NiO, CoO, and NiO:CoO mixtures is reported and correlated with their elec-trochemical oxygen evolution reaction (OER) activity. It is also shown thatparticle fragmentation is an inherent consequence of ball milling, but someoxides can also experience a phase transformation. In the case of rocksalt-structured CoO, it is partially or entirely transformed to spinel-structuredCo 3O 4 . Additionally, NiCo 2O 4 with a spinel structure can be formed by ballmilling NiO and CoO simultaneously (both rocksalt structures), but only in theabsence of water. The changes impact the electrochemical activity of the initialoxides. Ball milled NiCoO 2 exhibits the highest activity with a mean potentialof 1.563 V at 10 mA cm2 , demonstrating the advantage of having Ni and Co inthe same structure. Although NiCo2O4 is also a binary oxide, the results indicatethat its metal coordination environment makes it intrinsically less active thanNiCoO2 for the OER in alkaline media..
001034171 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001034171 588__ $$aDataset connected to DataCite
001034171 7001_ $$0P:(DE-Juel1)161348$$aSchierholz, Roland$$b1$$eCollaboration author
001034171 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b2$$ufzj
001034171 7001_ $$00000-0002-9550-1013$$aLuna, Ana Laura$$b3$$eCorresponding author
001034171 7001_ $$0P:(DE-Juel1)175122$$aMechler, Anna Katharina$$b4$$eCorresponding author
001034171 773__ $$0PERI:(DE-600)3010017-3$$a10.1002/aesr.202400183$$gVol. 5, no. 12, p. 2400183$$n12$$p2400183$$tAdvanced energy & sustainability research$$v5$$x2699-9412$$y2024
001034171 8564_ $$uhttps://juser.fz-juelich.de/record/1034171/files/Adv%20Energy%20and%20Sustain%20Res%20-%202024%20-%20Bhandari%20-%20Exploring%20the%20Effect%20of%20Ball%20Milling%20on%20the%20Physicochemical%20Properties%20and.pdf$$yOpenAccess
001034171 909CO $$ooai:juser.fz-juelich.de:1034171$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001034171 9101_ $$0I:(DE-588b)36225-6$$60000-0002-1991-6428$$aRWTH Aachen$$b0$$kRWTH
001034171 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161348$$aForschungszentrum Jülich$$b1$$kFZJ
001034171 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b2$$kFZJ
001034171 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b2$$kRWTH
001034171 9101_ $$0I:(DE-588b)5008462-8$$60000-0002-9550-1013$$aForschungszentrum Jülich$$b3$$kFZJ
001034171 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)175122$$aForschungszentrum Jülich$$b4$$kFZJ
001034171 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)175122$$aRWTH Aachen$$b4$$kRWTH
001034171 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001034171 9141_ $$y2024
001034171 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001034171 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001034171 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-28
001034171 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-28
001034171 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERG SUST RES : 2022$$d2024-12-05
001034171 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
001034171 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-08-08T17:09:31Z
001034171 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-08-08T17:09:31Z
001034171 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-08-08T17:09:31Z
001034171 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-05
001034171 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-05
001034171 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-05
001034171 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV ENERG SUST RES : 2022$$d2024-12-05
001034171 920__ $$lyes
001034171 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001034171 980__ $$ajournal
001034171 980__ $$aVDB
001034171 980__ $$aUNRESTRICTED
001034171 980__ $$aI:(DE-Juel1)IET-1-20110218
001034171 9801_ $$aFullTexts