001034172 001__ 1034172 001034172 005__ 20241218210702.0 001034172 0247_ $$2arXiv$$aarXiv:2407.20820 001034172 037__ $$aFZJ-2024-06983 001034172 088__ $$2arXiv$$aarXiv:2407.20820 001034172 1001_ $$0P:(DE-Juel1)191416$$aSchlabes, Arne$$b0$$ufzj 001034172 245__ $$aFast Gates of Detuned Cat Qubit 001034172 260__ $$c2024 001034172 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1734500199_22766 001034172 3367_ $$2ORCID$$aWORKING_PAPER 001034172 3367_ $$028$$2EndNote$$aElectronic Article 001034172 3367_ $$2DRIVER$$apreprint 001034172 3367_ $$2BibTeX$$aARTICLE 001034172 3367_ $$2DataCite$$aOutput Types/Working Paper 001034172 500__ $$a11 pages, 6 figures 001034172 520__ $$aCat qubits have emerged as a promising candidate for quantum computation due to their higher error-correction thresholds and low resource overheads. In existing literature, the detuning of the two-photon drive is assumed to be zero for implementing single and multi-qubit gates. We explore a modification of the Hamiltonian for a range of detuning and demonstrate that high fidelity single qubit gates can be performed even by proper parameter matching. We also analyze the CNOT gate in presence of an approximate detuning term and explain its fidelity improvements through Shortcut to Adiabaticity corrections. 001034172 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0 001034172 536__ $$0G:(EU-Grant)101113946$$aOpenSuperQPlus100 - Open Superconducting Quantum Computers (OpenSuperQPlus) (101113946)$$c101113946$$fHORIZON-CL4-2022-QUANTUM-01-SGA$$x1 001034172 588__ $$aDataset connected to arXivarXiv 001034172 7001_ $$0P:(DE-Juel1)171686$$aAnsari, Mohammad$$b1$$ufzj 001034172 7001_ $$0P:(DE-HGF)0$$aBhowmick, Rahul$$b2 001034172 909CO $$ooai:juser.fz-juelich.de:1034172$$popenaire$$pVDB$$pec_fundedresources 001034172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191416$$aForschungszentrum Jülich$$b0$$kFZJ 001034172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171686$$aForschungszentrum Jülich$$b1$$kFZJ 001034172 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0 001034172 9141_ $$y2024 001034172 920__ $$lyes 001034172 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0 001034172 980__ $$apreprint 001034172 980__ $$aVDB 001034172 980__ $$aI:(DE-Juel1)PGI-2-20110106 001034172 980__ $$aUNRESTRICTED