001034174 001__ 1034174
001034174 005__ 20250203133242.0
001034174 0247_ $$2doi$$a10.1002/smll.202408044
001034174 0247_ $$2ISSN$$a1613-6810
001034174 0247_ $$2ISSN$$a1613-6829
001034174 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06985
001034174 0247_ $$2pmid$$a39584382
001034174 0247_ $$2WOS$$aWOS:001362082500001
001034174 037__ $$aFZJ-2024-06985
001034174 082__ $$a620
001034174 1001_ $$0P:(DE-HGF)0$$aKnispel, Timo$$b0
001034174 245__ $$aEngineering 2D Materials from Single‐Layer NbS 2
001034174 260__ $$aWeinheim$$bWiley-VCH$$c2025
001034174 3367_ $$2DRIVER$$aarticle
001034174 3367_ $$2DataCite$$aOutput Types/Journal article
001034174 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738235099_29871
001034174 3367_ $$2BibTeX$$aARTICLE
001034174 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001034174 3367_ $$00$$2EndNote$$aJournal Article
001034174 520__ $$aStarting from a single layer of NbS2 grown on graphene by molecular beam epitaxy, the single unit cell thick 2D materials Nb5/3S3-2D and Nb2S3-2D are created using two different pathways. Either annealing under sulfur-deficient conditions at progressively higher temperatures or deposition of increasing amounts of Nb at elevated temperature result in phase-pure Nb5/3S3-2D followed by Nb2S3-2D. The materials are characterized by scanning tunneling microscopy, scanning tunneling spectroscopy, and X-ray photoemission spectroscopy. The experimental assessment combined with systematic density functional theory calculations reveals their structure. The 2D materials are covalently bound without any van der Waals gap. Their stacking sequence and structure are at variance with expectations based on corresponding bulk materials highlighting the importance of surface and interface effects in structure formation.
001034174 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001034174 536__ $$0G:(GEPRIS)319897474$$aSFB 1238 B06 - Rastertunnelspektroskopie (B06) (319897474)$$c319897474$$x1
001034174 536__ $$0G:(GEPRIS)319898210$$aSFB 1238 C01 - Strukturinversionsasymmetrische Materie und Spin-Orbit-Phänomene mittels ab initio (C01) (319898210)$$c319898210$$x2
001034174 536__ $$0G:(GEPRIS)319464028$$aSFB 1238 A01 - Konstruktion von 2D-Heterostrukturen für die Kontrolle elektronischer, optischer und magnetischer Eigenschaften (A01) (319464028)$$c319464028$$x3
001034174 536__ $$0G:(GEPRIS)535290457$$aDFG project G:(GEPRIS)535290457 - Gezielte Herstellung von Vielteilchenzuständen in zweidimensionalen van-der-Waals-Heterostrukturen (535290457)$$c535290457$$x4
001034174 536__ $$0G:(GEPRIS)462692705$$aDFG project G:(GEPRIS)462692705 - Antiskyrmionen auf Oberflächen durch anisotrope Dzyaloshinskii-Moriya-Wechselwirkungen (462692705)$$c462692705$$x5
001034174 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001034174 7001_ $$0P:(DE-HGF)0$$aMohrenstecher, Daniela$$b1
001034174 7001_ $$0P:(DE-HGF)0$$aSpeckmann, Carsten$$b2
001034174 7001_ $$0P:(DE-HGF)0$$aSafeer, Affan$$b3
001034174 7001_ $$0P:(DE-HGF)0$$avan Efferen, Camiel$$b4
001034174 7001_ $$0P:(DE-HGF)0$$aBoix, Virgínia$$b5
001034174 7001_ $$0P:(DE-HGF)0$$aGrüneis, Alexander$$b6
001034174 7001_ $$0P:(DE-HGF)0$$aJolie, Wouter$$b7
001034174 7001_ $$0P:(DE-HGF)0$$aPreobrajenski, Alexei$$b8
001034174 7001_ $$0P:(DE-HGF)0$$aKnudsen, Jan$$b9
001034174 7001_ $$0P:(DE-Juel1)130513$$aAtodiresei, Nicolae$$b10
001034174 7001_ $$0P:(DE-HGF)0$$aMichely, Thomas$$b11
001034174 7001_ $$0P:(DE-HGF)0$$aFischer, Jeison$$b12$$eCorresponding author
001034174 773__ $$0PERI:(DE-600)2168935-0$$a10.1002/smll.202408044$$gp. 2408044$$n3$$p2408044$$tSmall$$v21$$x1613-6810$$y2025
001034174 8564_ $$uhttps://juser.fz-juelich.de/record/1034174/files/Small%20-%202024%20-%20Knispel%20-%20Engineering%202D%20Materials%20from%20Single%E2%80%90Layer%20NbS2-1.pdf$$yOpenAccess
001034174 909CO $$ooai:juser.fz-juelich.de:1034174$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001034174 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany$$b0
001034174 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany$$b1
001034174 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany$$b2
001034174 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany$$b3
001034174 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany$$b4
001034174 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a NanoLund and Division of Synchrotron Radiation Research, Department of Physics, Lund University, Lund, SE-221 00 Sweden$$b5
001034174 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany$$b6
001034174 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany$$b7
001034174 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a MAX IV Laboratory, Lund University, Lund, SE-221 00 Sweden$$b8
001034174 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a MAX IV Laboratory, Lund University, Lund, SE-221 00 Sweden$$b9
001034174 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a NanoLund and Division of Synchrotron Radiation Research, Department of Physics, Lund University, Lund, SE-221 00 Sweden$$b9
001034174 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130513$$aForschungszentrum Jülich$$b10$$kFZJ
001034174 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany$$b11
001034174 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany$$b12
001034174 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001034174 9141_ $$y2025
001034174 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
001034174 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001034174 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-25$$wger
001034174 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
001034174 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001034174 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL : 2022$$d2024-12-27
001034174 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
001034174 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27
001034174 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
001034174 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-27
001034174 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
001034174 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSMALL : 2022$$d2024-12-27
001034174 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001034174 980__ $$ajournal
001034174 980__ $$aVDB
001034174 980__ $$aUNRESTRICTED
001034174 980__ $$aI:(DE-Juel1)PGI-1-20110106
001034174 9801_ $$aFullTexts