001 | 1034174 | ||
005 | 20250203133242.0 | ||
024 | 7 | _ | |a 10.1002/smll.202408044 |2 doi |
024 | 7 | _ | |a 1613-6810 |2 ISSN |
024 | 7 | _ | |a 1613-6829 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-06985 |2 datacite_doi |
024 | 7 | _ | |a 39584382 |2 pmid |
024 | 7 | _ | |a WOS:001362082500001 |2 WOS |
037 | _ | _ | |a FZJ-2024-06985 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Knispel, Timo |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Engineering 2D Materials from Single‐Layer NbS 2 |
260 | _ | _ | |a Weinheim |c 2025 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1738235099_29871 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Starting from a single layer of NbS2 grown on graphene by molecular beam epitaxy, the single unit cell thick 2D materials Nb5/3S3-2D and Nb2S3-2D are created using two different pathways. Either annealing under sulfur-deficient conditions at progressively higher temperatures or deposition of increasing amounts of Nb at elevated temperature result in phase-pure Nb5/3S3-2D followed by Nb2S3-2D. The materials are characterized by scanning tunneling microscopy, scanning tunneling spectroscopy, and X-ray photoemission spectroscopy. The experimental assessment combined with systematic density functional theory calculations reveals their structure. The 2D materials are covalently bound without any van der Waals gap. Their stacking sequence and structure are at variance with expectations based on corresponding bulk materials highlighting the importance of surface and interface effects in structure formation. |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
536 | _ | _ | |a SFB 1238 B06 - Rastertunnelspektroskopie (B06) (319897474) |0 G:(GEPRIS)319897474 |c 319897474 |x 1 |
536 | _ | _ | |a SFB 1238 C01 - Strukturinversionsasymmetrische Materie und Spin-Orbit-Phänomene mittels ab initio (C01) (319898210) |0 G:(GEPRIS)319898210 |c 319898210 |x 2 |
536 | _ | _ | |a SFB 1238 A01 - Konstruktion von 2D-Heterostrukturen für die Kontrolle elektronischer, optischer und magnetischer Eigenschaften (A01) (319464028) |0 G:(GEPRIS)319464028 |c 319464028 |x 3 |
536 | _ | _ | |a DFG project G:(GEPRIS)535290457 - Gezielte Herstellung von Vielteilchenzuständen in zweidimensionalen van-der-Waals-Heterostrukturen (535290457) |0 G:(GEPRIS)535290457 |c 535290457 |x 4 |
536 | _ | _ | |a DFG project G:(GEPRIS)462692705 - Antiskyrmionen auf Oberflächen durch anisotrope Dzyaloshinskii-Moriya-Wechselwirkungen (462692705) |0 G:(GEPRIS)462692705 |c 462692705 |x 5 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Mohrenstecher, Daniela |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Speckmann, Carsten |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Safeer, Affan |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a van Efferen, Camiel |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Boix, Virgínia |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Grüneis, Alexander |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Jolie, Wouter |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Preobrajenski, Alexei |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Knudsen, Jan |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Atodiresei, Nicolae |0 P:(DE-Juel1)130513 |b 10 |
700 | 1 | _ | |a Michely, Thomas |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Fischer, Jeison |0 P:(DE-HGF)0 |b 12 |e Corresponding author |
773 | _ | _ | |a 10.1002/smll.202408044 |g p. 2408044 |0 PERI:(DE-600)2168935-0 |n 3 |p 2408044 |t Small |v 21 |y 2025 |x 1613-6810 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1034174/files/Small%20-%202024%20-%20Knispel%20-%20Engineering%202D%20Materials%20from%20Single%E2%80%90Layer%20NbS2-1.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1034174 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany |0 I:(DE-HGF)0 |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a NanoLund and Division of Synchrotron Radiation Research, Department of Physics, Lund University, Lund, SE-221 00 Sweden |0 I:(DE-HGF)0 |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany |0 I:(DE-HGF)0 |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany |0 I:(DE-HGF)0 |b 7 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a MAX IV Laboratory, Lund University, Lund, SE-221 00 Sweden |0 I:(DE-HGF)0 |b 8 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a MAX IV Laboratory, Lund University, Lund, SE-221 00 Sweden |0 I:(DE-HGF)0 |b 9 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a NanoLund and Division of Synchrotron Radiation Research, Department of Physics, Lund University, Lund, SE-221 00 Sweden |0 I:(DE-HGF)0 |b 9 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)130513 |
910 | 1 | _ | |a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany |0 I:(DE-HGF)0 |b 11 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany |0 I:(DE-HGF)0 |b 12 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-25 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-10-25 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-25 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SMALL : 2022 |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-27 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b SMALL : 2022 |d 2024-12-27 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|