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Dominant patterns found in set of over 2,600 EIS conducted on SOC stacks.
Patterns sufficient for low-dimensional description and accurate reconstruction of EIS.
Reconstruction of EIS from sparse measurements exploiting the determined patterns.
Identification of 2-6 optimal frequencies for reconstruction at varying meas. conditions.
Corrupted/distorted EIS can be reconstructed sampling only at optimal frequencies.
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A B S T R A C T

Electrochemical Impedance Spectroscopy (EIS) represents one of the most widely utilized techniques for
the characterization of solid oxide cells (SOCs) and stacks in contemporary research. This work examines
patterns in a set 𝑋 of over 2,600 EIS measurements conducted on SOC stack level to identify a low-
dimensional representation of the data. Besides the efficient training of data-driven models in such, this work
primarily focuses on enabling the reconstruction of complete spectra from sampling the impedance at a limited
number of relevant frequencies, thus significantly reducing the measurement time. By applying singular value
decomposition, a reconstruction matrix can be developed containing a set of 𝑟 patterns to sufficiently describe
all the EIS in 𝑋. Based on these patterns, a set of 𝑟∕2 tailored frequencies can be determined. For every
permutation of measurement conditions in 𝑋 and for 𝑟 between four and twelve, the reconstruction results are
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comprehensively discussed utilizing EIS measurements conducted on a holdout SOC stack and thus not being
part of the data set 𝑋. Furthermore, EIS containing varying faults and artificially distorted EIS are used to
also capture unforeseen behavior. Depending on the measurement conditions accurate reconstructions can be
reported for 𝑟 = 6, i.e. three tailored frequencies.
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1. Introduction

EIS is ubiquitous for performance assessment and degradation anal-
sis in electrochemical converters, such as SOC single cells and stacks
1]. However, the comparatively long measurement time and the rel-
tively high costs preclude the application of standard EIS techniques
uch as sine sweep for diagnosis of SOC stacks in industrial applica-
ions. For the diagnosis and State-of-Charge estimation of batteries,
here exist measurement techniques employing Pseudo-random Binary
equence (PRBS) [2,3] input signals or Pulse Impedance Spectroscopy

(PIS) [4] to significantly shorten the necessary measurement time. As
n early stage monitoring method PRBS was applied in [5] to detect

faulty operation modes, namely fuel starvation, leakage and carbon
deposition. Further, in [6] a random binary sequence with discrete
switching times was applied to monitor temporal fuel starvation during
a 3,600 h SOC stack experiment. The main advantage of EIS based
on PRBS excitation signals is a significant reduction in measurement
time which in both cases was successfully demonstrated. However,
these techniques still require an elaborated excitation signal together

ith the corresponding hardware capable of processing broadband
ignals. In the case of devices under test (DUTs) that do not undergo
undamental changes in their material and geometric properties, such
s mass-produced SOC stacks, an alternative approach to facilitating
IS measurements may be to focus on the output signal rather than
he input signal. If it can be demonstrated that a set of EIS measure-
ents conducted on several identical or at least similar DUTs via sine

weep measurements exhibits dominant and recurrent patterns, it may
e possible to reconstruct the data from sparse EIS measurements at
pecific frequencies only. This would result in a notable reduction in
he time required for measurements and would also avoid the need
or broadband-capable hardware. The approximation of data from few
easurements exploiting data-inherent patterns is closely related to

he field of optimal sensor location in general and reconstruction from
parse measurements [7] in particular. In a concise overview, [7]
resents an analysis of applications and methods. One illustrative in-
tance of this methodology in an entirely distinct engineering domain
s its application to reconstructing flow fields based on a limited set

of measurements as investigated in [8]. In their study, the authors
observed a significantly enhanced estimation of vortex shedding past
a cylinder at low Reynolds number, when comparing to traditional
methods, e.g. least squares regression. The reconstruction quality was
observed to outperform latter method even when noise or corrupted
measurements were present. In terms of the present task, this would
entail a reduction in the number of necessary sine sweep measurements,
which are relatively straightforward to conduct. This could potentially
result in a rapid and cost-effective alternative to conventional EIS mea-
surements. However, such methods are contingent upon the existence
of dominant data-inherent patterns in a set of measurements that are
intended to be sampled sparsely. These patterns can be determined by
means of Principal Component Analysis (PCA) [9], Proper Orthogonal
Decomposition (POD) [10], or, as applied in this work, by means of
he Singular Value Decomposition (SVD) [11, pp. 4]. An advantageous
roperty of the SVD is the provision of an optimal rank-𝑟 approximation
f a data matrix 𝑋 by only considering the first 𝑟 singular values and
iscarding the rest, thus yielding a low-dimensional representation of
ata [11, pp. 8]. The number of required point sensors for recon-

struction from sparse measurements using the SVD is directly linked
to the rank 𝑟 as shown in [7], which is why the determination of an
ppropriate threshold for the rank is utterly important for this method.
n general, there exist various methods to do so. One conventional
2 
approach is to truncate the singular values at a specific value for the
cumulative energy content, for instance greater than 90% or 99% [11,
pp. 34]. Another method is to select the threshold in a way ensuring
hat the condition number of the singular values containing matrix
ssumes a specific value, as exemplified by [12]. In contrast, [13]

proposed a method to find the optimal threshold under the assumption
hat the low-rank structure of a data matrix contains Gaussian white
oise. A comparison of these methods to find the optimal threshold
ill be given for low-rank approximations of a set of over 2.600
IS measurements conducted on SOC stacks at Forschungszentrum
ülich. Thus, a set of holdout measurements conducted at various
easurement conditions but on a separate DUT with similar mate-

rial properties could accurately be reconstructed from sampling the
impedance, depending on the measurement condition, at only three
to six frequencies. The optimal frequencies for impedance sampling
are estimated for each measurement condition individually and for
all measurement conditions combined. Moreover, the information-rich
features embedded in low-rank approximations derived from the SVD
have been successfully deployed in diverse domains of fuel cell model-
ng. For instance, low-rank approximations have been employed for the
iagnosis of faults in polymer electrolyte membrane (PEM) fuel cells,
s demonstrated in [14]. Additionally, they have been utilized for the

experimental parameterization of a PEM fuel cell stack, wherein the
simultaneous estimation of multiple structured state space models was
conducted [15]. The suitability of the determined low-rank features,
in the present work referred to as eigenspectra, for identification of
distinct degradation states and recurrent fault patterns is investigated,
as well. In future work the focus will be on application of the found pat-
terns in machine learning (ML) frameworks for performance prediction.
The reconstruction quality is also verified for EIS containing unforeseen
peculiarities, with sampling of the impedance at those frequencies
determined to be optimal. This includes the introduction of artificially
induced distortions via equivalent circuit modeling (ECM) and EIS in
the presence of known faults, such as a loss of contact on one layer of
the stack.

2. Data and methods

2.1. Consolidation of the EIS data set

In recent years several SOC stack experiments have been con-
ducted at Forschungszentrum Jülich utilizing the standard Jülich F10
design [16,17] comprising fuel electrode supported half-cells by the
manufacturer elcogen (Tallinn, Estonia), some with in-house screen
printed air electrodes. The stacks have been subjected to a variety of
operational modes over different durations of operation, but consis-
tently for the purpose of degradation science. 16 of these experiments
were identified as suitable for the scope of this work, with further
information given on them in Section S1. The consolidated experiments
comprise approximately 47,000 h of operation and over 2.600 individ-
ual EIS spectra, in total. In addition, the EIS measurements conducted
on a further holdout stack experiment were used for validation. All
EIS measurements were conducted on each individual stack layer and
on stack level (sum of layer measurements) at specific stages of the
experiments. Further, all measurements were conducted in galvanos-
tatic mode, usually with 5A DC and 2A AC excitation and only in few
cases deviating towards larger DC currents and smaller AC currents,
respectively. Similarly, the gas flows were usually kept at standardized

̇ −1
values (𝑉𝑛 = 1.1 l min of H2 or H2O depending on operating mode plus
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additional feed gas and �̇�𝑛 = 4 l min−1 of air per stack layer).1 The stack
emperatures varied between 650◦C and 800◦C. Further, the majority
f measurements was conducted in fuel cell mode, but several measure-
ents were also conducted in electrolysis and few also in co-electrolysis
ode. Thus, the consolidated set of EIS measurements provides a com-
rehensive overview of degradation stages and minor fault patterns on
OC stack level in a range of measurement conditions. To compensate
or recurrent instabilities such as minor temperature drifts or parasitic,
nductive impedance, the set of EIS measurements has been curated
sing the proposed procedure shown in [18]. As a result of the Lin-

ear Kramers–Kronig validity test, high-frequency impedance exhibiting
large residual errors is omitted in some measurements, resulting in
spectra with a reduced maximum frequency. Furthermore, the number
of frequencies per measurement decade at which the impedance was
determined varies across the entire data set. The first peculiarity can
be remedied by reducing the maximum considered frequency of all
measurements. The second point, however, requires a re-sampling of
he measurements due to subsequent data handling in large matrices

that use a consistent frequency range as an index. A cubic spline
approximation has been applied to all measurements to interpolate
to a consistent range of 50 frequencies per measurement decade in
the range between 0.1 Hz and the respective highest frequency, but
maximum 50 kHz. The number of frequencies per measurement decade
was chosen upon the majority of measurements. The magnitude and
phase of the impedance were separately interpolated, and the resulting
values were used to form the complex impedance. With regard to
degradation analysis, the time under load, respectively time under
temperature at the date of the EIS measurement and the measurement
conditions are important. Therefore, Fig. 1 illustrates the latter together

ith the distribution of frequencies that the measurements in the data
set comprise. For this overview, the measurements were attributed to
the closest temperatures, however, by far the most were conducted at
700◦C. A significant number of measurements has been conducted in
humidified H2, typically with 20% steam content. Furthermore, most
f the measurements were taken with a duration of less than 6,000 h,
hereby under current or under temperature means the actual time in

oad operation or in the heated oven, as all experiments were conducted
n furnaces. Some of the measurements were conducted at beyond
2,000 h under load and temperature, respectively. Conclusively, Fig. 1

also depicts the aforementioned fraction of spectra exhibiting a certain
usable maximum frequency. As illustrated 49.9% of the impedance
spectra exhibit a maximum frequency of 25 kHz, 86.8% reach 15 kHz
nd all spectra in the consolidation show a maximum frequency of

7.5 kHz. To utilize the majority of measurements and taking into
account the comparably low information content at high frequencies,
inter alia, due to lower signal to noise ratio (SNR) in spectra conducted
on stack level, it is reasonable to neglect the frequencies above 7.5 kHz.
The range of frequencies logarithmically distributed with 50 steps per
decade between 0.1 Hz and 7.5 kHz is abbreviated with 𝑓 within
this work. The set of curated and pre-processed EIS measurements is
vectorially concatenated into a large data matrix 𝑋 ∈ R𝑛×𝑚 for further
data analysis. In addition, the real 𝑍′ and imaginary part 𝑍′′ of the
impedance are vertically stacked to obtain a matrix with rational values
only, as exemplified in Eq. (1). The horizontal arrangement of the
individual spectra in the form of column vectors is purely chosen in the
chronological order of the performed experimental characterizations
and is therefore arbitrary. For the set of curated and pre-processed EIS
measurements, the number of individual spectra assumes a value of
𝑚 = 2.610, while 𝑛 = 2|𝑓 | = 488:

𝑋 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑍′
0.1 Hz,1 𝑍′

0.1 Hz,2 …
⋮ ⋱ ⋮

𝑍′
7.5 k Hz,1 … 𝑍′

7.5 k Hz,𝑚
𝑍′′

0.1 Hz,1 𝑍′′
0.1 Hz,2 …

⋮ ⋱ ⋮
𝑍′′

7.5 k Hz,1 … 𝑍′′
7.5 k Hz,𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝑛×𝑚, 𝑓𝑖 ∈ 𝑓 (1)

1 𝑇 = 273, 15K and 𝑝 = 101325Pa.
𝑛 𝑛 s

3 
for the chosen frequency range and number per measurement decade,
respectively. All EIS conducted on a specific stack experiment, namely
F1004-139 (cf. Section S1) were excluded from the main analysis and
are referred to throughout this work for the purpose of validation. The
data handling and evaluation is conducted with Python 3.9 and selected
rameworks and libraries [19,20].

2.2. Determination of dominant patterns in the data set

In the literature, there exists a number of suitable methods for
dimension reduction via identification of predominant patterns often
referred to as latent spaces. In this work, the focus is on the application
of the singular value decomposition (SVD), which is comprehensively
described in [11, pp. 4]. The SVD is suitable to determine an optimal
and unique rank-𝑟 approximation of high-dimensional data by exploit-
ing dominant patterns. In addition to numerical stability, the SVD is
guaranteed to exist, unlike eigen-decompositions [11, pp. 4]. The SVD
is applied to the consolidated EIS data matrix 𝑋 ∈ R𝑛×𝑚, which was
mean centered beforehand by subtracting the mean spectrum �̄�:

𝑋 = 𝑈 𝛴 𝑉 𝑇 (2)

𝑈 ∈ R𝑛×𝑛 and 𝑉 ∈ R𝑚×𝑚 are unitary matrices with orthonormal
columns, and 𝛴 ∈ R𝑛×𝑚 is a matrix with real, non-negative entries on
the diagonal and zeros off the diagonal [11, p. 5]. While the columns of
𝑈 and 𝑉 are referred to as the right, respectively left singular vectors,
the diagonal elements of 𝛴, arranged in descending order, are called
singular values. Given the centrality of impedance spectra to this work,
it is reasonable to designate the column vectors in 𝑈 as eigenspectra. A
rank-𝑟 approximation of the EIS data matrix 𝑋 denoted as 𝑋 is feasible
by only considering the first 𝑟 singular values, thus the first 𝑟 columns
and rows in 𝑈 and 𝑉 𝑇 , respectively. Thus, a significant dimensional
reduction of the EIS data can be achieved by a low-rank approximation:
̃ = 𝑈r𝛴r𝑉

𝑇
r (3)

The proof of the optimal approximation is provided by the Eckart-
Young theorem [21]. Therefore, the approximation by means of the
dyadic summation of Eq. (3) provides, for a given rank 𝑟, the best
approximation of 𝑋 considering the 𝑙2-norm [11, p. 8]:

̃ =
𝑟
∑

𝑘=1
𝜎𝑘𝑢𝑘𝑣

𝑇
𝑘 (4)

Based on this, the matrix 𝑈r containing the eigenspectra represents
a reconstruction basis by which all measurements contained in 𝑋 can
be transformed into a 𝑟-dimensional space. This does also apply to
measurements acquired on additional DUTs not included in 𝑋, as will
be shown for EIS conducted on a holdout validation stack under com-
parable measurement conditions. Therefore, a new measurement 𝑥∗ is
transformed by mean-centering of the measurement and multiplication
with 𝑈𝑇

r (cf. Eq. (5)), whereby a unique fingerprint of this measurement
s determined in the reconstruction basis 𝑈r . A further multiplication by
r and addition of the mean spectrum �̄� results in the high-dimensional

econstruction 𝑥∗ of the original measurement:

𝑥∗ = �̄� + 𝑈r𝑈
𝑇
r (𝑥

∗ − �̄�) (5)

Consequently, the quality of the approximation of a specific mea-
surement 𝑥, given a data set 𝑋, is only dependent upon the rank 𝑟
f the reconstruction basis 𝑈r . In turn, for the choice of the rank 𝑟
he importance of individual eigenspectra 𝑈𝑖 must be considered. As
escribed above, the latter is given by the singular values 𝜎𝑖 arranged in
escending order. One method for determining an optimal threshold for
ank r is to truncate at that rank which encompasses 90% or 99% of the
ariance or energy content in the data, as indicated by the cumulative
um of the singular values [11, pp. 34]. An alternative approach is to
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Fig. 1. Statistic description of EIS data set by means of measurement conditions, duration under load/temperature at measurement time and fraction of measurements comprising
a certain maximum frequency after curation.
Fig. 2. Cumulative energy (left) and absolute value (right) of singular values in 𝛴. Right graph also depicts optimal thresholds for 𝑟 determined with three different methods.
constrain the condition number of the matrix 𝜅(𝑋) to be close or equal
to 103 [12], which is defined as:

𝜅(𝑋) = 𝜎max(𝑋)
𝜎min(𝑋)

(6)

In [13], the authors proposed a method for identifying an optimal
threshold for the truncation of the SVD in the context of a low-rank
structure of the matrix 𝑋, which is contaminated with Gaussian noise:

𝑋 = 𝑋t r ue + 𝛾 𝑋noise (7)

For a known noise magnitude 𝛾, there exist closed-form solutions for
the hard threshold. However, in the case of non-square matrices 𝑋
and unknown noise magnitudes, the threshold must be approximated.
To do so, the magnitude of noise is estimated assuming a typical S-
shaped structure of the singular values and scaling the distribution
of the singular values by using the mean singular value. Both the
methodological background and related MATLAB code are provided
in [13]. Fig. 2 depicts the cumulative energy as well as the absolute
value of the singular values for the range of singular values 𝑛. As
depicted in the left plot of Fig. 2 the cumulative energy content of
4 
the first singular values is predominant, which implies that only a few
eigenspectra, i.e. column vectors of 𝑈r , are necessary for a sufficient
approximation. This assumption is confirmed by the distinct course
of the singular values 𝜎𝑖 as depicted in the right plot in Fig. 2. The
curve is initially steep, followed by a less pronounced slope and drops
significantly for the last singular values, which is a favorable property
of the SVD and verifies the assumption of a S-curve shaped distribution
of singular values regarding the methodology in [13]. Additionally, the
optimal thresholds according to the three introduced methodologies
are depicted, which indicate the 14th, 15th and 23rd singular value.
Consequently, the representation of individual EIS measurements can
be effectively reduced to less than 5%, which is particularly advan-
tageous for data-driven modeling. As long as the reconstruction basis
𝑈𝑟 is not changed, only the low-dimensional representation needs to
be stored or exchanged, thus also decreasing the amount of exchanged
data, which is beneficial for cloud-based applications. The distinction
between the method proposed in [13] and the two other methods is
likely attributable to the supposition that the optimal threshold is situ-
ated at the point of intersection between the ordinate and the prolonged
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shape of the S curve, excluding the initial steep segment. In order to
gain a fundamental understanding of the nature and representation of
he eigenspectra, Section S2 depicts the initial five columns of the 𝑈
atrix together with the mean spectrum in 𝑋 in a Bode diagram.

3. Results and discussion

The initial Section 3.1 outlines the reconstruction capabilities of
EIS using the proposed procedure and illustrates their use as a filter,
articularly in instances where measurements exhibit fluctuations due

to process-related as well as measurement-related noise. In Section 3.2,
a three-dimensional representation of EIS in the space of eigenspectra
is presented, utilizing all measurements obtained from one of the stack
experiments included in 𝑋. Section 3.3 is dedicated to the determina-
tion of optimal frequencies to enable the reconstruction of complete
pectra from sparse sampling of the impedance. In order to verify this
pproach, the reconstruction of EIS is tested not only for holdout vali-
ation measurements, but also for cases of distorted and falsified EIS in
ection 3.4. Therefore, a validation measurement is artificially distorted

via ECM fit to magnify individual prevailing polarization resistances as
well as including additional emerging polarization resistances. Further,
the reconstruction of EIS containing known faults is presented as well.

3.1. Reconstruction of EIS from set of eigenspectra

To obtain an impression of the reconstruction quality of new mea-
surements not contained in 𝑋, Fig. 3 shows the reconstruction of four
impedance spectra recorded under varying conditions but from the
same solid oxide cell stack with internal type designation F1004-139
used for validation purposes. The measurements were conducted as an
early stage performance characterization. In addition, the mean spec-
trum is depicted to illustrate that the reconstruction are not performed
in some advantageous regime but off the mean. The reconstructions
were calculated according to Eq. (5) and with a rank of 𝑟 = 12,
i.e. a slight undercut of the values previously defined as an optimal
hard threshold. The reconstruction quality indicates that measurements
conducted on a stack not contained in 𝑋 but under similar conditions,
which were not used to determine the singular value decomposition,
can be reconstructed with a minimal loss of information (mean squared
error MSE (𝑥, 𝑥) = 2.32 ⋅ 10−10 … 4.31 ⋅ 10−11 Ω2). This phenomenon
can also be observed in EIS measurements exhibiting different stages
of degradation, provided that an interpolation between stages is per-
formed. This finding in turn confirms the importance of the variance
of the data set 𝑋 regarding the desired descriptive variables, such
as the operating conditions and the degradation stages. One of the
key advantages of the SVD is its ability to identify the most pertinent
information within a given data set, while simultaneously disregarding
any extraneous noise. Accordingly, the reconstruction of measurements
contaminated with process-related noise should be equivalent to a
filtering process in some sense tailored to the specific EIS measurements
contained in 𝑋. Among this data, measurements conducted in humidi-
fied H2 are prone to instabilities due to the fluctuations in steam supply,
since the relatively small steam flows are off the design point of the
electrical steam generators. Such instabilities can resemble uniformly
distributed process-related noise, as illustrated in Fig. 3-B together with
our rank-𝑟 reconstructions of the measurement conducted at 700◦C
n humidified H2. The progressive enhancement in reconstruction pre-
ision with rising rank 𝑟 (mean squared error MSE (𝑥, 𝑥) = 4.29 ⋅
0−9, 1.09 ⋅ 10−9, 3.51 ⋅ 10−10 and 2.39 ⋅ 10−10 Ω2, for ranks 𝑟 = 2, 5, 10
nd 20, respectively) evinces a comparably steep increase compared to
hat observed between the cumulative energy and the singular values,
s depicted in the left plot of Fig. 2. The aforementioned capability

of the reconstruction basis as a filtering algorithm is most evident in
the low-frequency range, where steam flow-induced fluctuations are
observable. In addition, outliers can be filtered out very efficiently,
although it should be emphasized that the initial preparation including
 f

5 
the curation of such instabilities from the data set 𝑋 is crucial and
elaborated in [18]. Further, it is noticeable that the incorporation of
different eigenspectra seem to affect different frequency regimes of the
spectrum to a varying extent. The high-frequency part, for example,
s only sufficiently represented from 𝑟 > 5 on, while the plateau in
he medium frequency range and the low-frequency arc are already
ell approximated. A comparison of the magnitude of the first five

igenspectra over the frequency revealed that 𝑈1−3 contain the most
imilarity and are therefore more comparable to the average spectrum
̄ , for instance. 𝑈4 and 𝑈5, on the opposite, mostly affect the low and
igh frequency parts of the magnitude, respectively. To visualize these
eculiarities of 𝑈1−5 Section S2 depicts these in a Bode diagram.

3.2. Low dimensional representation of EIS in the space of eigenspectra

Since every permutation of orthonormal vectors in 𝑈𝑖𝑗 𝑘 spans a
vector space, EIS measurements can be depicted in a three dimensional
latent space. Fig. 4 for instance, shows the space spanned by the first
three column vectors 𝑈123 containing all EIS measurements conducted
during a 2-layer SOC stack long-term experiment with internal desig-
nation F1002-204, depicted as colored dots. The stack was subjected
twice in succession to operation in five defined load phases with a
current density of at least 1.0 A cm−2 and a fuel utilization of at least
70%. Overall, the stack was operated for over 3.400h under load.

After each load phase, EIS measurements were performed on both
layers of the stack under the 4 conditions shown in Fig. 4, yielding
up to 22 individual spectra per measurement condition. Noticeably,
the low-dimensional representation of different measurements exhibits
distinct clusters corresponding to the measurement conditions. Regard-
ing the physical significance that can be attributed to the individual
eigenspectra 𝑈𝑖, there are clear correlations between the axes 𝑈123 and
the temperature, humidity content and degradation progress. The latter
can be deduced from the temporal evolution of the individual mea-
surements, i.e. the degradation trend, along the dashed arrow shown in
Fig. 4-B, independent of the measurement conditions. Furthermore, this
ow-dimensional representation is also suitable for identifying faulty
tates. During the above-mentioned experiment a leakage was iden-
ified on the upper layer of the stack, which is evident in the open
ircuit voltage (OCV) and the corresponding EIS measurement. This
lteration of the spectrum, particularly in the low-frequency semicircle,
lso changes the low-dimensional representation, with the result that
hose measurements move towards the region of the measurements
onducted in humidified H2, as marked in Fig. 4-A by a dashed el-
ipse. These measurements differ from the others and tend to form
n independent cluster. Such properties suggest an application of this
atent space for data-driven classification and regression tasks in the
ontext of performance and failure prediction of SOC stacks, which is
he subject of future work. A particularly appropriate set of features
or such tasks is the projection of individual spectra onto the respective
igenspectra 𝑈𝑖, in this sense displaying the exact proportion of the re-
pective eigenspectra that make up the specific spectrum. This already
entioned fingerprint of a new measurement 𝑈𝑇

𝑟=1...9(𝑥 − �̄�) is depicted
n Fig. 5 for various measurements conducted at different degradation

stages and measurement conditions, over the first nine eigenspectra.
he measurements shown were all acquired on the two-layer long-term

stack experiment with type designation F1002-204, also depicted in
Fig. 4. The initial stage corresponds to the initial characterization, the
ntermediate to that after the first completion of the five operating

phases and the final to that after the repetition of the five phases
entioned above. As already assumed by Fig. 4, major differences can

e observed with regard to various measurement conditions, also at the
ame degradation stage, although this mainly applies to approximately
he first five eigenspectra. However, distinct patterns are observable
hich in the case of image recognition tasks are used very effectively

o train classifiers [11, pp. 178]. The latter is especially interesting
or early stage detection of failures, such as a leakage, as identified
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Fig. 3. A: Reconstruction of spectra conducted on same stack layer at various measurement conditions performed with rank 𝑟 = 12 of 𝑈𝑟. B: Measurement conducted in humidified
𝐻2 at 700◦C together with reconstructions using four different ranks 𝑟 of 𝑈𝑟.
Fig. 4. Low-dimensional representation of all EIS measurements conducted on a two layer stack with internal type designation F1002-204.
on cell 2 of F1002-204 during the first repetition of the five phases
by a significantly reduced OCV in addition to the typical decrease of
the low-frequency semicircle in the respective EIS. The OCV at 750◦C
in dry H2 for cell 1 and 2 was 1225 mV/1203 mV at the initial stage,
1223 mV/1161 mV at the intermediate stage and 1219 mV/1118 mV at
the final stage. This trend of an increasing leakage is also reflected
by the temporal change in the fingerprint of both cells, especially with
respect to the first two eigenspectra. While a smaller decrease in the
projection onto the first eigenspectrum 𝑈1 can be observed for those
measurements conducted in dry H2 on cell 2, a stronger decrease in
the projection onto the second eigenspectrum 𝑈2 is noticeable. This
behavior leads directly to the spectra encircled in Fig. 4-A, which have
been identified as containing a leakage. In addition, the projections on
6 
the other eigenspectra 𝑈𝑖>3 show partly uniform and partly opposing
changes between the two cells, depending on the measurement con-
ditions. Even if the changes are comparatively small, the projections
on 𝑈4,5 appear to drop more sharply with decreasing measurement
temperature, considered over time and for the measurements in dry H2.
This observation is only valid to a limited extent for the measurements
in humidified H2, which in turn show no clear behavior with regard
to the projection on 𝑈4,5. This is particularly evident in the case of
𝑈4, which has been observed to exert a significant influence on the
low-frequency regime of the spectrum. In contrast to EIS measurements
conducted in dry H2 the latter is less affected by the observed leakage
in EIS with humidified H2. A particularly important task for practical
applications is the early identification of fault patterns, such as for cell 2
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Fig. 5. Projections of EIS spectra onto the first nine eigenspectra of 𝑈 . Measurements conducted at different conditions and different stages of degradation of stack F1002-204.
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in Fig. 5, and the estimation of their probability during operation. One
urdle, however, is the necessity of uniquely labeled reference mea-
urements with the respective fault patterns, besides leakages. Within
he consolidated set of EIS measurements 𝑋, there is a near-exclusive
uperposition of fault patterns and degradation phenomena, such that
here are few unambiguously labeled measurements. To attain spectra
ith distinctly high projections on specific eigenspectra, assuming these

o represent a specific fault pattern, one could try to sample spectra in
istinct regions or along specific axes of the three dimensional latent
pace in Fig. 4. This does inevitably result in inverting a reconstruction
atrix with 𝑈 ∈ R𝑛×𝑚 and 𝑛 ≫ 𝑚, which is possible by means

f the Moore–Penrose pseudo inverse [22], for instance, but results
in very unsatisfactory reconstruction quality due to the neglect of
the remaining values for 𝑈𝑖>3. Therefore the alteration of validation
EIS measurements by means of an ECM fit (cf. Section 3.4) will be
performed to attain specifically falsified spectra for the identification of
fault patterns in future works. Calculated or simulated EIS were already
successfully chosen in literature to attain a sufficient data set, as in [23]
or instance, to correlate EIS with specific faults.

3.3. Reconstruction of EIS from tailored measurements at few frequencies

A significant reduction in the complexity of sine-sweep based EIS,
ith the objective of achieving near-industrial application, would entail

he measurement of only few particularly relevant frequencies and
he reconstruction of the entire spectrum from these. The observation
hat in a set of EIS measurements 𝑋 there exist intrinsic eigenspec-
ra 𝑈𝑖, of which only few are necessary for the sufficiently accurate
pproximation 𝑋 of all spectra in the data set raises the question of
hether this also applies to individual frequencies. Therefore, this sec-

tion covers the approach to ascertain frequencies, which are sufficient
to measure for an accurate reconstruction of measurements conducted
on additional DUTs not included in 𝑋, but with similar material com-
binations. The underlying task is referred to as reconstruction from
sparse measurements in literature and is closely related to optimal
sensor positioning. [7] gives an excellent introduction into the topic

ith different example applications. The aim in the present case is to
alculate a high-dimensional reconstruction 𝑥 from a low dimensional
easurement 𝑦 of the impedance conducted at specific frequencies 𝑓𝑖 ∈

𝑓 , which are to deduce from the basis of eigenspectra 𝑈𝑟. In such cases,
where known patterns in the measured data are exploited to measure
7 
the specifically best sensor positions 𝑝 instead of random positions,
he underlying task is also referred to as tailored sensing as described
n [7]. Following this procedure, a measurement matrix 𝐶 ∈ R𝑟×𝑛 is in-

troduced, which is intended to define the optimal frequencies at which
to sample the impedance. Therefore, each row in 𝐶 contains a unit
entry in the specific column corresponding to 𝑓𝑖 and zeros elsewhere,
ince the values in the columns are arranged in ascending order of the
easurement frequency (cf. Eq. (1)). The real and imaginary parts in

Eq. (1) were deliberately stacked vertically in order to consider them
as separate measurement positions, which has considerable advantages,
as will be shown subsequently. According to [7] the optimal position
of the unit entries in the measurement matrix 𝐶 can be determined via
formulation of an optimization problem, for a given rank 𝑟:

𝑎 = ar g min
𝑎′

‖𝑎′‖1, 𝑠.𝑡. 𝑦 = 𝐶 𝑈𝑟𝑎
′ = 𝜃 𝑎′ (8)

The variable 𝑎 represents the linear combination of columns of 𝐶 and
𝑈𝑟, to retrieve the best possible reconstruction only using the 𝑝 = 𝑟
number of tailored sensors. As [7] show, the goal is to minimize the
condition number of the 𝜃 matrix in order to ensure a stable inversion,
which is necessary for reconstruction of individual measurements, as
shown subsequently. Further, the authors show that the optimal sensor
locations defined by 𝐶 can be determined by means of the pivoted QR-
factorization [24], which controls the condition number by minimizing
he matrix volume, whereas the pivot locations in 𝐶𝑇 are the optimal
ensor positions 𝑝 to sample the impedance spectrum 𝑥 at:

𝑈𝑇
𝑟 𝐶

𝑇 = 𝑄𝑅 (9)

This relationship results from the fact that the pivoting procedure is a
reedy approximation of Eq. (8), whereby the pivot positions are pre-

cisely the column vectors of 𝑈𝑇
𝑟 that are more relevant to the procedure.

Which in this case is the maximum two-norm related to the previous
pivot column vector in order to maximize the sub-matrix volume. A
major advantage of this method is the simplicity of application, since
the QR-factorization is ubiquitous and well implemented in almost all
programming frameworks. A recent example is the implementation to
determine optimal sensors for structural health monitoring in buildings
from reconstruction of dynamic responses, as investigated in [25] and
closely related to the present task. In the present work, the sensor po-
sitions 𝑝, namely the frequencies 𝑓𝑖 at which to sample the impedance,
are directly deduced from the reconstruction basis 𝑈 . Using only these
𝑟
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frequencies, a high-dimensional reconstruction 𝑥 can be determined
from a low-dimensional measurement 𝑦. Specifically, this is achieved
by multiplying the reconstruction basis of rank 𝑟 with the variable 𝑎,
which represents the optimal linear combination of 𝐶 and 𝑈𝑟 as defined
in Eq. (8). The variable 𝑎 in turn can be assessed by inverting the
matrix 𝜃 as depicted in Eq. (10). Consequently, the high-dimensional
econstruction 𝑥 can be traced back to the reconstruction basis 𝑈𝑟, the
easurement matrix 𝐶, and the low-dimensional measurement 𝑦 at the

pecific frequencies 𝑓𝑖 encoded in 𝐶:

𝑥 = 𝑈𝑟𝑎 = 𝑈𝑟𝜃
−1𝑦 = 𝑈𝑟(𝐶 𝑈𝑟)−1𝑦 (10)

Fig. 6-A depicts both the original spectrum, as well as the high-
dimensional reconstruction of a validation EIS measurement not in-
cluded in the data set 𝑋 to verify the reconstruction capabilities.
Apart from the mean spectrum in 𝑋 the sensor positions 𝑝, namely
the uniquely identified frequencies are depicted as well. As previ-
ously mentioned, the real and imaginary parts of the impedance are
theoretically considered as different sensors. As a result, two sensor
ositions can almost coincide if one measures the real and the other
he imaginary part at a particular frequency 𝑓𝑖, as can be seen in Fig. 6-

A. Of course, this is only a theoretical and not a practical assumption.
However, by manually adjusting exactly these positions, it is possible
o acquire two sensor positions with the same frequency. The number
f sensor positions 𝑝 is counted by the number of uniquely measured
requencies. By this means, the number of sensor positions can be
educed to 𝑝 ≥ 𝑟∕2 as depicted in Fig. 6-B, while maintaining a similar
econstruction quality, since the rank of 𝑈𝑟 did not change. Only the
easurement matrix 𝐶 must be adapted to include a unit entry for

he real part and one for the imaginary part in the column vectors
ssigned to the respective frequencies 𝑓𝑖 (cf. Eq. (1)). This reduction

in the number of necessary point sensors is highly advantageous for
he practical applicability of this method and undercuts the theoretical

lower limit of 𝑝 = 𝑟 described in [7]. Nevertheless, the manual
djustment of frequencies is incongruous with the original optimality,
s evidenced by a divergent reconstruction quality of measurements
onducted under specific measurement conditions. Naturally, for an
pplication that is suitable for regular use in determining simplified

EIS, it is essential to demonstrate accurate reconstructions from tailored
impedance measurements for a subset or even for all measurement
conditions and especially for all DUTs. To find a set of locally op-
imal frequencies, considering only specific measurement conditions,

and globally optimal frequencies, taking into account all measurement
conditions in the data matrix 𝑋, the respective frequencies 𝑓𝑖 must not
be determined via manual adjustment of the measurement matrix 𝐶
as done above. Instead, an optimization approach subject to a subset
f EIS measurements �̂� ⊂ 𝑋 and the desired number of frequencies,
.e. the sensor positions 𝑝 = 𝑟∕2, is proposed. The subset �̂� can include

every permutation of measurement conditions or degradation stages,
but within this work only the main measurement conditions depicted
in Fig. 1 will be considered separately.

The optimality of individual frequencies 𝑓𝑖 given a reconstruc-
ion matrix with rank 𝑟 = 2𝑖 is evaluated by minimizing the mean

squared error (MSE) between the individual measurements 𝑥𝑗 ∈ �̂� and
heir high-dimensional reconstruction 𝑥𝑗 over the considered frequency

range 𝑓 . The only hard constraint is the pairwise congruence of one
frequency for measuring the real and one for measuring the imaginary
part at each sensor position 𝑝, i.e. 𝑖 = 𝑟∕2. The optimization problem
as described in Eq. (11) is conducted for the most interesting ranks,
namely four to twelve and the frequency range 𝑓 that most EIS mea-
surements in the data set do exhibit (cf. Fig. 1). The optimization is
evaluated with GEKKO [26].

arg min𝑓𝑖∈𝑓
MSE(𝑥𝑗 , ̃𝑥𝑗 ), 𝑥𝑗 ∈ �̂� ⊂ 𝑋

𝑠.𝑡.
𝑖 = 𝑟∕2 ∈ N

𝑟 = [4, 6, 8, 10, 12]
−1 3

(11)
𝑓 = [10 … 7.5 ⋅ 10 Hz]

8 
The outcome is a set of 𝑖 measurement frequencies 𝑓𝑖 for every EIS mea-
surement 𝑥 in the specific subset �̂�, yielding the smallest MSE between
reconstruction and original measurement. To attain the distribution on
which the frequency of occurrence of individual measurement frequen-
cies 𝑓𝑖 is based, a bootstrap procedure with 𝑛𝑟𝑒𝑠. = 1000 resamples
is conducted. For instance, Fig. 7 depicts the bootstrap distribution
for all 857 EIS measurements in 𝑋 conducted at 700◦C in dry H2
cf. Fig. 1: the remaining 12 EIS belong to the holdout validation

stack) over the frequency range 𝑓 for all ranks r separately. This
procedure makes it possible to assess the distribution shape in terms
of whether the simplifying assumption can be made that the mean
value of the distribution represents it well. As can be seen in Fig. 7
the majority of the distributions do exhibit a form close to a Gaussian
normal distribution, thus the mean frequency of each distribution can
be considered as the optimal frequency within the specific range. The
frequencies identified as optimal for all subsets �̂� in this manner are
abbreviated as 𝑓 ∗

𝑖 in the following. The resulting bootstrap distribu-
ions are presented in Sections S3-S7, accompanied by the respective

reconstruction of validation measurements using the identified optimal
frequencies 𝑓 ∗

𝑖 for each measurement condition individually and finally
for the complete data set 𝑋, thus all measurement conditions combined.
A review of Fig. 7 reveals that the distributions are predominantly lo-
calized in the gray shaded areas, which indicate the expected locations
of the respective peaks of the distribution of relaxation times (DRT)
econvolution. This observation lends further support to the physical
eaningfulness of the proposed procedure, which is substantiated when

onsidering the reconstruction quality achieved with the frequencies 𝑓 ∗
𝑖

identified from the bootstrap distributions depicted in Fig. 7. These are
depicted in Section S5 for the application of validation measurements
conducted at 700◦C on the holdout SOC stack as also employed for
the remaining measurement conditions outlined in Sections S3-S7. The
respective validation measurements were conducted after 2,400 h of
fuel cell operation under load with at least 0.8 A cm−2 and at least
70% fuel utilization. For Fig. 7, it is noteworthy that the distributions
between 100 and 101 Hz for 𝑟 = 8 and 𝑟 = 10 exhibit a comparatively
ronounced widening and less Gaussian shape. A comparison with
he reconstructions depicted in Fig. S6 indicates that the mentioned
requency range can be allocated to the leftmost end of the low-

frequency semicircle. This frequency range is prone to varying faults,
s comprehensively described in [23] for the case of fault prediction
rom EIS, where exactly this range could be identified as most in-
luential. The varying degradation stages represented by the EIS in
, including the presence of faults with varying degrees of severity,
rovide a plausible explanation for the ambiguity observed in the
espective frequency range. Besides other factors as fluctuations during
he EIS measurement which are mostly observable in the low-frequency
ange, a reason on the procedural side could be the comparatively high

weighting of the MSE by the low-frequency arc. In addition, despite
he comparatively high 50 frequencies per measurement decade, the
ensity of the measurement frequencies is significantly lower than in

the high-frequency part. It is therefore likely that such ambiguous form
of distributions will also manifest primarily in the frequency range 10−1

to 101 Hz, along with the other measurement conditions, as illustrated
in Sections S3-S7. A comparison with the specified sections confirms
exactly this assumption. It is noteworthy that as the rank increases, the
distribution becomes increasingly narrower, thereby facilitating a more
definitive estimation of the optimal frequency 𝑓 ∗

𝑖 for each distribution.
This effect is particularly noticeable when determining the optimal
frequencies for all measurements contained in 𝑋 (cf. Section S7).

3.4. Reconstruction of distorted and corrupted EIS from sampling at 𝑓 ∗
𝑖

A crucial aspect towards practical implementation of the proposed
method is the precise reconstruction of unseen or distorted EIS from
tailored sensing, in particular. Such a distortion or corruption could
be induced from excessive deterioration due to operation, known fault
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Fig. 6. Reconstruction of sample EIS spectrum conducted in dry 𝐻2 at 700◦C from low-dimensional measurement at initial (A) and optimized point sensors 𝑝 (B). Reconstruction
of sample EIS spectra at various measurement conditions from sparse measurement at point sensors 𝑝 (C).
Fig. 7. Bootstrap distribution of frequencies 𝑓𝑖 identified for all EIS measurements in 𝑋 conducted at 700◦C in dry H2 (cf. Fig. 1) for varying ranks 𝑟 of reconstruction matrix 𝑈𝑟.
ray shaded areas indicate typical ranges of DRT peak-to-process attribution [27] of: Gas conversion peak (A), oxygen electrode peak (B), fuel electrode diffusion peak (C) and

uel electrode charge transfer peak (D).
s

patterns on individual stack layers (such as a leakage or loss of contact)
r even a failure on stack or system level, such as a gradient in tem-
erature or fuel supply during the EIS measurement. The unforeseen
ccurrence of additionally emerging polarization resistances or the
 u

9 
implausibly high change of latter is particularly interesting to observe,
as such measurements are barely contained in the data set. Due to this
carcity, it is conceivable to artificially adjust a validation measurement
sing an ECM fit in such a way that the desired distortion is created. For
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this purpose, one of the holdout validation measurements, performed
at 700◦C in dry H2 during the initial characterization of the stack
experiment was chosen for ECM modeling to ensure a pristine reference
state. The ECM consisted of a high-frequency series resistance (𝑅𝑠),
an inductance (𝐿) and four series-connected elements of resistance
and constant phase element (𝑅𝑄) and is often used in literature to fit
SOCs [28]. The ECM fit was carried out up to a frequency of 30 kHz
nstead of 7.5 kHz in order to take sufficient account of the high-
requency influence. However, the reconstructions were only performed
p to 7.5 kHz. Subsequently, each of the four resistances of the 𝑅𝑄
lements was increased by 100%, while the remaining resistances were
aintained at their original values. The resulting spectra were then

ampled with the optimal frequencies 𝑓 ∗
𝑖 determined for all EIS in 𝑋

to provide the most general application and reconstructed with the
original reconstruction matrix 𝑈𝑟. In addition, both in the high and
low frequency regime a 𝑅𝑄-element was inserted individually to also
cover an additionally emerging polarization resistance. The additional
elements, designated 𝑅𝑄lf and 𝑅𝑄hf , respectively, exhibit identical
characteristics to those of 𝑅𝑄4 and 𝑅𝑄1, with the exception that the
resistance in 𝑅𝑄lf was chosen to be half of that in 𝑅𝑄4. For each of
hese six scenarios Fig. 8 depicts the original ECM fit, the fit of the

distorted ECM as well as the reconstruction of latter determined for a
ank of 𝑟 = 12. The corresponding graphs for lower ranks can be found

in Section S8. Given that the distorted spectra are not included in 𝑋, the
econstructions exhibit a noteworthy degree of accuracy. This is partic-
larly evident in the case of 𝑅𝑄3 and 𝑅𝑄hf , where the magnification
nd insertion of polarization resistances has resulted in a pronounced
istortion. However, this accuracy markedly declines at lower ranks,
uch that for 𝑟 = 6, only 𝑅𝑄hf exhibits a notable alignment, primarily
ue to the disparate frequency ranges of the distorted ECM fit and the
econstruction. As previously observed for Fig. 7, the frequencies 𝑓 ∗

𝑖
identified as optimal for 𝑟 = 12 are only partly situated within the gray
haded areas where the corresponding DRT deconvolution peaks would
e expected. This observation also holds true for the optimal frequen-
ies 𝑓 ∗

𝑖 identified for all measurements in 𝑋, as depicted in Fig. S10.
he frequencies are distributed in a relatively uniform manner, occupy-

ng positions between the specified DRT ranges. In the present case, this
istribution is advantageous because it facilitates the reconstruction of
he transition between the initial and distorted ECM components with
recision. The aforementioned behavior appears to diminish in cases
here 𝑟 = 10 (cf. Figs. S10, S13), wherein the optimal frequencies are
redominantly situated within the respective DRT ranges. However, a
irect comparison is not feasible due to the varying ranks. A notable
bservation regarding the left shoulder of the low-frequency arc is that
t is reconstructed with greater deficiencies, not only for the case of
n distorted low-frequency polarization resistance (𝑅𝑄4/𝑅𝑄lf ), but also
or the case of a distorted high-frequency arc, specifically in relation to
𝑄1 and 𝑅𝑄hf . The mentioned inaccuracy decreases for the next lower

ank, since here the measured frequency is closer to the mentioned
eft shoulder, but at the expense of a lower reconstruction quality in
ther parts (cf. Fig. S13). In the case of rank 𝑟 = 12, it appears that
he objective is to replicate the mean ratio between high and low
requency semicircles encoded in 𝑋. This assumption is substantiated
y the curvature in the referenced left shoulder of the low-frequency
emicircle, which exhibits a significant change in curvature for 𝑅𝑄1
nd 𝑅𝑄hf , as if, starting from this area, the arc should have been
arger. This phenomenon is particularly pronounced in 𝑅𝑄4, where the

ratio between the low- and high-frequency semicircles is most markedly
ltered. This observation raises the question of whether the addition of
rtificially adjusted spectra to the data set could potentially enhance
he reconstruction quality of EIS measurements that contain faults
r distortions as depicted in Fig. 8. This question will be addressed
n future work, especially as it could improve another very practical
hallenge, namely the reconstruction of EIS measurements affected by
nown or unknown fault patterns, sampling just from those frequencies
∗ identified as optimal for all EIS in 𝑋. Such fault patterns include
𝑖

10 
internal damages such as electrical short circuits and contact losses or
leakages, as well as external influences such as variations in operating
temperature or gas supply during the measurement. Section S9 presents
two internal and two external faults observed in EIS measurements
on stack level, as well as the corresponding reconstructions for vary-
ng ranks 𝑟. In conclusion, it can be stated that faults which do not
ontravene the Kramers–Kronig validity [29], particularly the time-

invariance, can be approximated with a sufficient degree of accuracy.
n EIS measurement conducted with a feed gas gradient was not ade-

quately reconstructed, which was indicated by an insufficient accuracy
in the low frequency arc. In comparison, a measurement comprising
a temperature drift can be reconstructed with greater accuracy. It
can be observed that a widening of the low-frequency semicircle can
e approximated with greater precision than a significant increase in

curvature, thus resulting in a hook shape. However, in consideration of
the substantially shorter measurement time achieved by the proposed
method, the impact of relatively moderate gradients, such as those
subjected to the EIS measurements, should be minimal.

4. Concluding remarks

This work proposes a methodology that allows the reconstruction of
the EIS from sparse sampling of the impedance at only a few relevant
frequencies. Therefore, a set of over 2,600 EIS measurements conducted
on SOC stacks at Forschungszentrum Jülich GmbH containing various
measurement conditions and degradation stages has been decomposed
using the SVD. The measurements were carried out on 16 different
stacks with similar material combinations, which were subjected to
more than 47,000 h of operation in fuel cell, electrolysis and co-
electrolysis mode, as well as thermal cycling. Prior to analysis the data
has been pre-processed and curated from recurrent instabilities using
an approach introduced in a prior work [18]. The following conclusions
were reached:

1. Less than 5% of the singular values of the SVD are relevant and
therefore sufficient for accurate description and reconstruction
of the data set. The space spanned by these, in this work re-
ferred to as, eigenspectra provides a descriptive low-dimensional
representation of individual EIS measurements. In particular,
the representation allows for the assignment of different ag-
ing stages, measurement conditions, and the presence of fault
patterns, such as leakages.

2. Depending on the number of utilized eigenspectra 𝑟 a set of 𝑟∕2
frequencies could be identified to sparsely sample the impedance
at and reconstruct complete impedance spectra from. Bootstrap
distributions to identify the optimal frequencies as a function of
𝑟 and given all EIS measurements in the data set conducted at
specific conditions indicate distinct ranges, which do align with
typical ranges of DRT peak-to-process attributions.

3. Reconstruction capabilities on a holdout validation stack with
similar material combinations indicate high accuracies for all
measurement conditions in the original data set. As expected,
the accuracy increases with 𝑟, but sufficient reconstructions are
already achieved by sampling three optimal frequencies, i.e. 𝑟 =
6.

4. The generalizability of the proposed method was verified by
means of artificially deteriorated EIS by ECM fit, which were not
included in the initial data set, either. The reconstructions were
calculated using those frequencies identified as optimal for all
conditions in the data set, thus excluding a biased choice based
on the conditions the distorted measurements were recorded at.
Reasonable agreements were achieved for 𝑟 = 10, whereby the
spectrum was also sufficiently reproduced with 𝑟 = 8, although

with reduced accuracy in the low-frequency part.
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Fig. 8. Reconstruction of artificially distorted spectra by sampling the impedance at optimal frequencies 𝑓 ∗
𝑖 evaluated for all measurements in 𝑋 for rank 𝑟 = 12. Magnified or

dded ECM components are displayed as solid black line, while other ECM components are indicated as dashed lines. ECM fit (blue) displayed for frequency of up to 30 kHz,
reconstructions evaluated up to 7.5 kHz. Validation measurement conducted at 700◦C in dry H2 on holdout validation stack.
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5. Accounting for corrupted EIS measurements the reconstruction
of EIS comprising recurrent faults, such as a loss of electrical
contact between layers, an external leakage, and measurements
comprising feed gas and temperature gradients, was verified as
well. Using the as optimal identified frequencies for all measure-
ment conditions in the data set, sufficient reconstructions were
achieved with 𝑟 = 10.

6. In contrast to state-of-the-art fast impedance methods such as
PRBS or PIS the proposed method does not necessarily rely on
hardware with high bandwidth and further allows for a readjust-
ment of the specific measurement frequencies. By constraining
the frequency in the proposed optimization procedure, for in-
stance, it is possible to avoid measuring the low-frequency part
and therefore enable time-efficient measurements, comparable
to the mentioned methods.

Overall, the results suggest that an additional enrichment of the data
set, potentially through the use of artificially altered EIS via ECM fit
of existing measurements, could further enhance the reconstruction
capabilities. This approach is the subject of future work, which will
combine the proposed method for tailored EIS with the training of data-
driven performance prediction models utilizing the low-dimensional
representation proposed in this work.
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