001034186 001__ 1034186
001034186 005__ 20250203133242.0
001034186 0247_ $$2doi$$a10.1002/pro.5238
001034186 0247_ $$2ISSN$$a0961-8368
001034186 0247_ $$2ISSN$$a1469-896X
001034186 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06997
001034186 0247_ $$2pmid$$a39660913
001034186 0247_ $$2WOS$$aWOS:001374415700001
001034186 037__ $$aFZJ-2024-06997
001034186 041__ $$aEnglish
001034186 082__ $$a610
001034186 1001_ $$0P:(DE-Juel1)201922$$aXie, Song$$b0$$ufzj
001034186 245__ $$aMolecular basis of the CYFIP2 and NCKAP1 autism‐linked variants in the WAVE regulatory complex
001034186 260__ $$aBethesda, Md.$$bProtein Society$$c2025
001034186 3367_ $$2DRIVER$$aarticle
001034186 3367_ $$2DataCite$$aOutput Types/Journal article
001034186 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738065488_6609
001034186 3367_ $$2BibTeX$$aARTICLE
001034186 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001034186 3367_ $$00$$2EndNote$$aJournal Article
001034186 520__ $$aThe WAVE regulatory pentameric complex regulates actin remodeling. Two components of it (CYFIP2 and NCKAP1) are encoded by genes whose genetic mutations increase the risk for Autism Spectrum Disorder (ASD) and related neurodevelopmental disorders. Here, we use a newly developed computational protocol and hotspot analysis to uncover the functional impact of these mutations at the interface of the correct isoforms of the two proteins into the complex. The mutations turn out to be located on the surfaces involving the largest number of hotspots of the complex. Most of them decrease the affinity of the proteins for the rest of the complex, but some have the opposite effect. The results are fully consistent with the available experimental data. The observed changes in the WAVE regulatory complex stability might impact on complex activation and ultimately play a role in the aberrant pathway of the complex, leading to the cell derangement associated with the disease.
001034186 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001034186 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001034186 7001_ $$0P:(DE-Juel1)192214$$aZuo, Ke$$b1$$eCorresponding author$$ufzj
001034186 7001_ $$0P:(DE-HGF)0$$aDe Rubeis, Silvia$$b2
001034186 7001_ $$0P:(DE-HGF)0$$aRuggerone, Paolo$$b3$$eCorresponding author
001034186 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b4$$eCorresponding author
001034186 773__ $$0PERI:(DE-600)2000025-X$$a10.1002/pro.5238$$gVol. 34, no. 1, p. e5238$$n1$$pe5238$$tProtein science$$v34$$x0961-8368$$y2025
001034186 8564_ $$uhttps://juser.fz-juelich.de/record/1034186/files/Manuscript-unmarked.pdf$$yOpenAccess
001034186 8564_ $$uhttps://juser.fz-juelich.de/record/1034186/files/Protein%20Science%20-%202024%20-%20Xie%20-%20Molecular%20basis%20of%20the%20CYFIP2%20and%20NCKAP1%20autism%E2%80%90linked%20variants%20in%20the%20WAVE%20regulatory.pdf$$yOpenAccess
001034186 8564_ $$uhttps://juser.fz-juelich.de/record/1034186/files/Supporting%20information-unmarked.pdf$$yRestricted
001034186 8767_ $$d2024-12-16$$eHybrid-OA$$jDEAL
001034186 909CO $$ooai:juser.fz-juelich.de:1034186$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001034186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201922$$aForschungszentrum Jülich$$b0$$kFZJ
001034186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192214$$aForschungszentrum Jülich$$b1$$kFZJ
001034186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b4$$kFZJ
001034186 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001034186 9141_ $$y2025
001034186 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001034186 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001034186 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001034186 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001034186 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001034186 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-25
001034186 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001034186 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-25$$wger
001034186 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001034186 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001034186 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPROTEIN SCI : 2022$$d2025-01-01
001034186 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
001034186 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
001034186 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
001034186 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-01
001034186 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-01
001034186 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
001034186 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPROTEIN SCI : 2022$$d2025-01-01
001034186 920__ $$lyes
001034186 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x0
001034186 980__ $$ajournal
001034186 980__ $$aVDB
001034186 980__ $$aUNRESTRICTED
001034186 980__ $$aI:(DE-Juel1)INM-9-20140121
001034186 980__ $$aAPC
001034186 9801_ $$aAPC
001034186 9801_ $$aFullTexts