001     1034186
005     20250203133242.0
024 7 _ |a 10.1002/pro.5238
|2 doi
024 7 _ |a 0961-8368
|2 ISSN
024 7 _ |a 1469-896X
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-06997
|2 datacite_doi
024 7 _ |a 39660913
|2 pmid
024 7 _ |a WOS:001374415700001
|2 WOS
037 _ _ |a FZJ-2024-06997
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Xie, Song
|0 P:(DE-Juel1)201922
|b 0
|u fzj
245 _ _ |a Molecular basis of the CYFIP2 and NCKAP1 autism‐linked variants in the WAVE regulatory complex
260 _ _ |a Bethesda, Md.
|c 2025
|b Protein Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738065488_6609
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The WAVE regulatory pentameric complex regulates actin remodeling. Two components of it (CYFIP2 and NCKAP1) are encoded by genes whose genetic mutations increase the risk for Autism Spectrum Disorder (ASD) and related neurodevelopmental disorders. Here, we use a newly developed computational protocol and hotspot analysis to uncover the functional impact of these mutations at the interface of the correct isoforms of the two proteins into the complex. The mutations turn out to be located on the surfaces involving the largest number of hotspots of the complex. Most of them decrease the affinity of the proteins for the rest of the complex, but some have the opposite effect. The results are fully consistent with the available experimental data. The observed changes in the WAVE regulatory complex stability might impact on complex activation and ultimately play a role in the aberrant pathway of the complex, leading to the cell derangement associated with the disease.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zuo, Ke
|0 P:(DE-Juel1)192214
|b 1
|e Corresponding author
|u fzj
700 1 _ |a De Rubeis, Silvia
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ruggerone, Paolo
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 4
|e Corresponding author
773 _ _ |a 10.1002/pro.5238
|g Vol. 34, no. 1, p. e5238
|0 PERI:(DE-600)2000025-X
|n 1
|p e5238
|t Protein science
|v 34
|y 2025
|x 0961-8368
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1034186/files/Manuscript-unmarked.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1034186/files/Protein%20Science%20-%202024%20-%20Xie%20-%20Molecular%20basis%20of%20the%20CYFIP2%20and%20NCKAP1%20autism%E2%80%90linked%20variants%20in%20the%20WAVE%20regulatory.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/1034186/files/Supporting%20information-unmarked.pdf
909 C O |o oai:juser.fz-juelich.de:1034186
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)201922
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)192214
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145614
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-08-25
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PROTEIN SCI : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PROTEIN SCI : 2022
|d 2025-01-01
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21