001034214 001__ 1034214
001034214 005__ 20250401104336.0
001034214 0247_ $$2doi$$a10.1103/PhysRevApplied.22.064030
001034214 0247_ $$2ISSN$$a2331-7019
001034214 0247_ $$2ISSN$$a2331-7043
001034214 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-07003
001034214 0247_ $$2WOS$$aWOS:001380284900006
001034214 037__ $$aFZJ-2024-07003
001034214 082__ $$a530
001034214 1001_ $$0P:(DE-Juel1)176178$$aXu, Xuexin$$b0
001034214 245__ $$aLattice Hamiltonians and stray interactions within quantum processors
001034214 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2024
001034214 3367_ $$2DRIVER$$aarticle
001034214 3367_ $$2DataCite$$aOutput Types/Journal article
001034214 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734500290_22847
001034214 3367_ $$2BibTeX$$aARTICLE
001034214 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001034214 3367_ $$00$$2EndNote$$aJournal Article
001034214 520__ $$aDeveloping Hamiltonian models for quantum processors with many qubits on the same chip is crucial for advancing quantum computing technologies. Stray couplings between qubits lead to errors in gate operations. This study underscores the importance of incorporating lattice Hamiltonians into quantum circuit design. By comparing many-body effects with two-body stray couplings, we show how adjusting circuit parameters can increase two-qubit-gate fidelity. We find that loosely decoupled qubits result in weaker stray interactions and higher gate fidelity, challenging conventional assumptions. We investigate the scenario where three-body
001034214 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001034214 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x1
001034214 536__ $$0G:(DE-HGF)POF4-5214$$a5214 - Quantum State Preparation and Control (POF4-521)$$cPOF4-521$$fPOF IV$$x2
001034214 536__ $$0G:(BMBF)13N15685$$aVerbundprojekt: German Quantum Computer based on Superconducting Qubits (GEQCOS) - Teilvorhaben: Charakterisierung, Kontrolle und Auslese (13N15685)$$c13N15685$$x3
001034214 536__ $$0G:(EU-Grant)101113946$$aOpenSuperQPlus - Open Superconducting Quantum Computers (101113946)$$c101113946$$fHORIZON-CL4-2021-DIGITAL-EMERGING-02$$x4
001034214 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001034214 7001_ $$0P:(DE-HGF)0$$aManabputra$$b1
001034214 7001_ $$0P:(DE-HGF)0$$aVignes, Chloé$$b2
001034214 7001_ $$0P:(DE-Juel1)171686$$aAnsari, Mohammad H.$$b3$$eCorresponding author
001034214 7001_ $$0P:(DE-HGF)0$$aMartinis, John M.$$b4$$eCorresponding author
001034214 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.22.064030$$gVol. 22, no. 6, p. 064030$$n6$$p064030$$tPhysical review applied$$v22$$x2331-7019$$y2024
001034214 8564_ $$uhttps://juser.fz-juelich.de/record/1034214/files/PhysRevApplied.22.064030.pdf$$yOpenAccess
001034214 909CO $$ooai:juser.fz-juelich.de:1034214$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001034214 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176178$$aForschungszentrum Jülich$$b0$$kFZJ
001034214 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171686$$aForschungszentrum Jülich$$b3$$kFZJ
001034214 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001034214 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x1
001034214 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5214$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x2
001034214 9141_ $$y2024
001034214 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001034214 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001034214 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001034214 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001034214 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2022$$d2025-01-07
001034214 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001034214 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001034214 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001034214 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
001034214 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001034214 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-07
001034214 920__ $$lyes
001034214 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001034214 980__ $$ajournal
001034214 980__ $$aVDB
001034214 980__ $$aUNRESTRICTED
001034214 980__ $$aI:(DE-Juel1)PGI-2-20110106
001034214 9801_ $$aFullTexts