001     1034214
005     20250401104336.0
024 7 _ |a 10.1103/PhysRevApplied.22.064030
|2 doi
024 7 _ |a 2331-7019
|2 ISSN
024 7 _ |a 2331-7043
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-07003
|2 datacite_doi
024 7 _ |a WOS:001380284900006
|2 WOS
037 _ _ |a FZJ-2024-07003
082 _ _ |a 530
100 1 _ |a Xu, Xuexin
|0 P:(DE-Juel1)176178
|b 0
245 _ _ |a Lattice Hamiltonians and stray interactions within quantum processors
260 _ _ |a College Park, Md. [u.a.]
|c 2024
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1734500290_22847
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Developing Hamiltonian models for quantum processors with many qubits on the same chip is crucial for advancing quantum computing technologies. Stray couplings between qubits lead to errors in gate operations. This study underscores the importance of incorporating lattice Hamiltonians into quantum circuit design. By comparing many-body effects with two-body stray couplings, we show how adjusting circuit parameters can increase two-qubit-gate fidelity. We find that loosely decoupled qubits result in weaker stray interactions and higher gate fidelity, challenging conventional assumptions. We investigate the scenario where three-body 𝑍⁢𝑍⁢𝑍 interaction surpasses two-body 𝑍⁢𝑍 interactions, highlighting the transformative potential of lattice Hamiltonians for novel multiqubit gates. Moreover, we investigate the cross-resonance gate within the lattice-Hamiltonian framework and examine the impact of microwave pulses on stray coupling. This emphasizes the necessity of developing a comprehensive theoretical framework that includes lattice interactions, which are now critical given the sophistication of contemporary quantum hardware. These insights are vital for developing fault-tolerant quantum computing and next-generation quantum processors.
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 0
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 1
536 _ _ |a 5214 - Quantum State Preparation and Control (POF4-521)
|0 G:(DE-HGF)POF4-5214
|c POF4-521
|f POF IV
|x 2
536 _ _ |a Verbundprojekt: German Quantum Computer based on Superconducting Qubits (GEQCOS) - Teilvorhaben: Charakterisierung, Kontrolle und Auslese (13N15685)
|0 G:(BMBF)13N15685
|c 13N15685
|x 3
536 _ _ |a OpenSuperQPlus - Open Superconducting Quantum Computers (101113946)
|0 G:(EU-Grant)101113946
|c 101113946
|f HORIZON-CL4-2021-DIGITAL-EMERGING-02
|x 4
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Manabputra
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Vignes, Chloé
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ansari, Mohammad H.
|0 P:(DE-Juel1)171686
|b 3
|e Corresponding author
700 1 _ |a Martinis, John M.
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1103/PhysRevApplied.22.064030
|g Vol. 22, no. 6, p. 064030
|0 PERI:(DE-600)2760310-6
|n 6
|p 064030
|t Physical review applied
|v 22
|y 2024
|x 2331-7019
856 4 _ |u https://juser.fz-juelich.de/record/1034214/files/PhysRevApplied.22.064030.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1034214
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176178
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171686
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 1
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5214
|x 2
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV APPL : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-07
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21