001034228 001__ 1034228
001034228 005__ 20241218210703.0
001034228 037__ $$aFZJ-2024-07017
001034228 041__ $$aEnglish
001034228 1001_ $$0P:(DE-Juel1)176178$$aXu, Xuexin$$b0$$ufzj
001034228 1112_ $$aAmerican Physicsal Society (APS) March Meeting$$cMinneapolis$$d2024-03-03 - 2024-03-08$$wUSA
001034228 245__ $$aParasitic-Free Gate: An Error-Protected Cross-Resonance Switch in WeaklyTunable Architectures
001034228 260__ $$c2024
001034228 3367_ $$033$$2EndNote$$aConference Paper
001034228 3367_ $$2BibTeX$$aINPROCEEDINGS
001034228 3367_ $$2DRIVER$$aconferenceObject
001034228 3367_ $$2ORCID$$aCONFERENCE_POSTER
001034228 3367_ $$2DataCite$$aOutput Types/Conference Poster
001034228 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1734500132_23678$$xPlenary/Keynote
001034228 520__ $$aWe propose a switch between two qubits that on adjusted parameters take a pair of qubits into idle and cross-resonance (CR) modes without accumulating residual ZZ interaction in either mode. Our detailed theoretical results show that these error-free modes do not necessarily require largely tunable circuits, such as magnetic modulation of qubits or couplers. We obtain the operational gate on weakly tunable circuits as well and show that switching between them is remarkably fast.
001034228 536__ $$0G:(DE-HGF)POF4-5214$$a5214 - Quantum State Preparation and Control (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001034228 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x1
001034228 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x2
001034228 536__ $$0G:(BMBF)13N15685$$aVerbundprojekt: German Quantum Computer based on Superconducting Qubits (GEQCOS) - Teilvorhaben: Charakterisierung, Kontrolle und Auslese (13N15685)$$c13N15685$$x3
001034228 7001_ $$0P:(DE-Juel1)171686$$aAnsari, Mohammad$$b1$$ufzj
001034228 909CO $$ooai:juser.fz-juelich.de:1034228$$pVDB
001034228 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176178$$aForschungszentrum Jülich$$b0$$kFZJ
001034228 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171686$$aForschungszentrum Jülich$$b1$$kFZJ
001034228 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5214$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001034228 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x1
001034228 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x2
001034228 9141_ $$y2024
001034228 920__ $$lyes
001034228 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001034228 980__ $$aposter
001034228 980__ $$aVDB
001034228 980__ $$aI:(DE-Juel1)PGI-2-20110106
001034228 980__ $$aUNRESTRICTED