001034272 001__ 1034272
001034272 005__ 20241218210703.0
001034272 037__ $$aFZJ-2024-07061
001034272 1001_ $$0P:(DE-Juel1)191416$$aSchlabes, Arne$$b0$$ufzj
001034272 1112_ $$aAPS March Meeting 2024$$cMinneapolis$$d2024-03-04 - 2024-03-08$$wUSA
001034272 245__ $$aAnalysis of the coupling strength between transmons interacting via Left-Handed metamaterials
001034272 260__ $$c2024
001034272 3367_ $$033$$2EndNote$$aConference Paper
001034272 3367_ $$2DataCite$$aOther
001034272 3367_ $$2BibTeX$$aINPROCEEDINGS
001034272 3367_ $$2DRIVER$$aconferenceObject
001034272 3367_ $$2ORCID$$aLECTURE_SPEECH
001034272 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1734500101_22847$$xPlenary/Keynote
001034272 520__ $$aLeft-Handed transmission lines can be designed to exhibit many modes near the typical transmon frequency. This multiplicity can be used to enhance qubit-qubit coupling, as opposed to just a single mode. We demonstrate that the strength of coupling between the transmon and the metamaterial modes depends on the qubit's frequency and its relative position with respect to the transmission line in a nontrivial manner, setting it apart from coupling via conventional (right-handed) transmission lines. Through simulations involving two transmons placed at different positions and operating at various flux-tuned frequencies, we can intentionally manipulate the coupling strength between the transmon and the resonator modes. Consequently, we study effective qubit-qubit interaction and its interesting features, which offer a high degree of flexibility in designing the desired interactions between the qubits, which can be activated or deactivated by making slight adjustments to the transmon frequency, typically within a range of just tens of megahertz.
001034272 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001034272 7001_ $$0P:(DE-Juel1)171686$$aAnsari, Mohammad$$b1$$ufzj
001034272 909CO $$ooai:juser.fz-juelich.de:1034272$$pVDB
001034272 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191416$$aForschungszentrum Jülich$$b0$$kFZJ
001034272 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171686$$aForschungszentrum Jülich$$b1$$kFZJ
001034272 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001034272 9141_ $$y2024
001034272 920__ $$lyes
001034272 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001034272 980__ $$aconf
001034272 980__ $$aVDB
001034272 980__ $$aI:(DE-Juel1)PGI-2-20110106
001034272 980__ $$aUNRESTRICTED