001034274 001__ 1034274
001034274 005__ 20250203103329.0
001034274 037__ $$aFZJ-2024-07063
001034274 1001_ $$0P:(DE-Juel1)191416$$aSchlabes, Arne$$b0$$ufzj
001034274 1112_ $$aAPS March Meeting 2023$$cLas Vegas$$d2023-03-05 - 2023-03-10$$wUSA
001034274 245__ $$aMultimode entangling interactions between transmons coupled through a metamaterial ring-resonator: theory
001034274 260__ $$c2023
001034274 3367_ $$033$$2EndNote$$aConference Paper
001034274 3367_ $$2DataCite$$aOther
001034274 3367_ $$2BibTeX$$aINPROCEEDINGS
001034274 3367_ $$2DRIVER$$aconferenceObject
001034274 3367_ $$2ORCID$$aLECTURE_SPEECH
001034274 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1734502757_22847$$xPlenary/Keynote
001034274 520__ $$aThe use of Left-Handed-Transmisson lines allows a very high mode denisty at frequencies above the IR cutoff due to its disperson relation. We theoretically support an experiment on coupling two qubits to the device and calculate the g-coupling to the modes, which exhibit different frequency dependency when compared to the right-handed case. A careful analysis of these couplings leads to the effective coupling between the qubits, which can be very large, since the modes are very dense and therefore transmit high interaction. In general this causes the ZZ-interaction between the qubits to be large, but we can still acurately predict static qubit-qubit interaction both for only a few kHz aswell as for tens of MHz. In this talk we will present the modeling of this Left-Handed system and compare it to experimental measurements.
001034274 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001034274 7001_ $$0P:(DE-Juel1)171686$$aAnsari, Mohammad$$b1$$ufzj
001034274 7001_ $$0P:(DE-HGF)0$$aMcBroom, Tianna$$b2
001034274 7001_ $$0P:(DE-Juel1)176178$$aXu, Xuexin$$b3$$ufzj
001034274 7001_ $$0P:(DE-HGF)0$$aKu, Jaseung$$b4
001034274 7001_ $$0P:(DE-HGF)0$$aCole, Bradley$$b5
001034274 7001_ $$0P:(DE-HGF)0$$aPlourde, Britton$$b6
001034274 909CO $$ooai:juser.fz-juelich.de:1034274$$pVDB
001034274 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191416$$aForschungszentrum Jülich$$b0$$kFZJ
001034274 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171686$$aForschungszentrum Jülich$$b1$$kFZJ
001034274 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176178$$aForschungszentrum Jülich$$b3$$kFZJ
001034274 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001034274 9141_ $$y2024
001034274 920__ $$lyes
001034274 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001034274 980__ $$aconf
001034274 980__ $$aVDB
001034274 980__ $$aI:(DE-Juel1)PGI-2-20110106
001034274 980__ $$aUNRESTRICTED