001034298 001__ 1034298
001034298 005__ 20241218210703.0
001034298 037__ $$aFZJ-2024-07083
001034298 1001_ $$0P:(DE-Juel1)175500$$aJoshi, Radhika$$b0
001034298 1112_ $$aAPS March Meeting 2024$$cMinneapolis$$d2024-03-03 - 2024-03-08$$wUSA
001034298 245__ $$aCR gate coupled to Reservoirs
001034298 260__ $$c2024
001034298 3367_ $$033$$2EndNote$$aConference Paper
001034298 3367_ $$2DataCite$$aOther
001034298 3367_ $$2BibTeX$$aINPROCEEDINGS
001034298 3367_ $$2DRIVER$$aconferenceObject
001034298 3367_ $$2ORCID$$aLECTURE_SPEECH
001034298 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1734502626_22947$$xPlenary/Keynote
001034298 520__ $$aSuperconducting qubits have emerged to become a promising platform for quantum computing. In a superconducting circuit, many qubits are coupled electronically to one another. A cross-resonance (CR) gate is a particularly important two-qubit gate, which enables operation of CNOT in these superconducting circuits. In CR gate, two qubits, the so-called control and target, are coupled and the control qubit is driven at frequency of the target qubit. In this project we study the effect of reservoirs on the operation of CR gate.
001034298 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001034298 7001_ $$0P:(DE-Juel1)171686$$aAnsari, Mohammad$$b1
001034298 7001_ $$0P:(DE-HGF)0$$aRapp, Julian$$b2
001034298 7001_ $$0P:(DE-HGF)0$$aSteensel, Alwin van$$b3
001034298 909CO $$ooai:juser.fz-juelich.de:1034298$$pVDB
001034298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)175500$$aForschungszentrum Jülich$$b0$$kFZJ
001034298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171686$$aForschungszentrum Jülich$$b1$$kFZJ
001034298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
001034298 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001034298 9141_ $$y2024
001034298 920__ $$lyes
001034298 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001034298 980__ $$aconf
001034298 980__ $$aVDB
001034298 980__ $$aI:(DE-Juel1)PGI-2-20110106
001034298 980__ $$aUNRESTRICTED