001 | 1034298 | ||
005 | 20241218210703.0 | ||
037 | _ | _ | |a FZJ-2024-07083 |
100 | 1 | _ | |a Joshi, Radhika |0 P:(DE-Juel1)175500 |b 0 |
111 | 2 | _ | |a APS March Meeting 2024 |c Minneapolis |d 2024-03-03 - 2024-03-08 |w USA |
245 | _ | _ | |a CR gate coupled to Reservoirs |
260 | _ | _ | |c 2024 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1734502626_22947 |2 PUB:(DE-HGF) |x Plenary/Keynote |
520 | _ | _ | |a Superconducting qubits have emerged to become a promising platform for quantum computing. In a superconducting circuit, many qubits are coupled electronically to one another. A cross-resonance (CR) gate is a particularly important two-qubit gate, which enables operation of CNOT in these superconducting circuits. In CR gate, two qubits, the so-called control and target, are coupled and the control qubit is driven at frequency of the target qubit. In this project we study the effect of reservoirs on the operation of CR gate. |
536 | _ | _ | |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) |0 G:(DE-HGF)POF4-5221 |c POF4-522 |f POF IV |x 0 |
700 | 1 | _ | |a Ansari, Mohammad |0 P:(DE-Juel1)171686 |b 1 |
700 | 1 | _ | |a Rapp, Julian |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Steensel, Alwin van |0 P:(DE-HGF)0 |b 3 |
909 | C | O | |o oai:juser.fz-juelich.de:1034298 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)175500 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)171686 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5221 |x 0 |
914 | 1 | _ | |y 2024 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-2-20110106 |k PGI-2 |l Theoretische Nanoelektronik |x 0 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|