001034300 001__ 1034300
001034300 005__ 20241218210703.0
001034300 037__ $$aFZJ-2024-07085
001034300 1001_ $$0P:(DE-Juel1)175500$$aJoshi, Radhika$$b0$$ufzj
001034300 1112_ $$aJUQCA Day 2024$$cJuelich$$d2024-06-27 - 2024-06-27$$wGermany
001034300 245__ $$aEntropy flow in Cross-Resonance gate
001034300 260__ $$c2024
001034300 3367_ $$033$$2EndNote$$aConference Paper
001034300 3367_ $$2BibTeX$$aINPROCEEDINGS
001034300 3367_ $$2DRIVER$$aconferenceObject
001034300 3367_ $$2ORCID$$aCONFERENCE_POSTER
001034300 3367_ $$2DataCite$$aOutput Types/Conference Poster
001034300 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1734502601_22766$$xPlenary/Keynote
001034300 520__ $$aWe consider a Cross-Resonance (CR) gate connected to external reservoirs. We study the effect of entangling operation taking place in the CR gate on theentropy flow. Obtaining such a relation is the first step towards engineering a programmable quantum heat engine.
001034300 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001034300 7001_ $$0P:(DE-Juel1)171686$$aAnsari, Mohammad$$b1$$ufzj
001034300 7001_ $$0P:(DE-Juel1)174097$$avan Steensel, Alwin$$b2
001034300 7001_ $$0P:(DE-HGF)0$$aRapp, Julian$$b3
001034300 909CO $$ooai:juser.fz-juelich.de:1034300$$pVDB
001034300 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)175500$$aForschungszentrum Jülich$$b0$$kFZJ
001034300 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171686$$aForschungszentrum Jülich$$b1$$kFZJ
001034300 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001034300 9141_ $$y2024
001034300 920__ $$lyes
001034300 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001034300 980__ $$aposter
001034300 980__ $$aVDB
001034300 980__ $$aI:(DE-Juel1)PGI-2-20110106
001034300 980__ $$aUNRESTRICTED