001034302 001__ 1034302
001034302 005__ 20241218210703.0
001034302 037__ $$aFZJ-2024-07087
001034302 1001_ $$0P:(DE-Juel1)175500$$aJoshi, Radhika$$b0$$ufzj
001034302 1112_ $$aFQMT24$$cPrague$$d2024-07-21 - 2024-07-27$$wCzech Republic
001034302 245__ $$aEntropy flow in Cross-Resonance gate
001034302 260__ $$c2024
001034302 3367_ $$033$$2EndNote$$aConference Paper
001034302 3367_ $$2BibTeX$$aINPROCEEDINGS
001034302 3367_ $$2DRIVER$$aconferenceObject
001034302 3367_ $$2ORCID$$aCONFERENCE_POSTER
001034302 3367_ $$2DataCite$$aOutput Types/Conference Poster
001034302 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1734500145_22947$$xPlenary/Keynote
001034302 520__ $$aWe consider a Cross-Resonance (CR) gate connected to external reservoirs. We study the effect of entangling operation taking place in the CR gate on theentropy flow. Obtaining such a relation is the first step towards engineering a programmable quantum heat engine.
001034302 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001034302 7001_ $$0P:(DE-Juel1)171686$$aAnsari, Mohammad$$b1$$ufzj
001034302 7001_ $$0P:(DE-HGF)0$$aRapp, Julian$$b2
001034302 7001_ $$0P:(DE-Juel1)174097$$avan Steensel, Alwin$$b3
001034302 909CO $$ooai:juser.fz-juelich.de:1034302$$pVDB
001034302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)175500$$aForschungszentrum Jülich$$b0$$kFZJ
001034302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171686$$aForschungszentrum Jülich$$b1$$kFZJ
001034302 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001034302 9141_ $$y2024
001034302 920__ $$lyes
001034302 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001034302 980__ $$aposter
001034302 980__ $$aVDB
001034302 980__ $$aI:(DE-Juel1)PGI-2-20110106
001034302 980__ $$aUNRESTRICTED