001     1034332
005     20250625202305.0
024 7 _ |a 10.1007/s00521-024-10674-5
|2 doi
024 7 _ |a 0941-0643
|2 ISSN
024 7 _ |a 1433-3058
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-07117
|2 datacite_doi
037 _ _ |a FZJ-2024-07117
082 _ _ |a 004
100 1 _ |a Ihsan, Ahmad Zainul
|0 P:(DE-Juel1)185910
|b 0
|u fzj
245 _ _ |a Modeling dislocation dynamics data using semantic web technologies
260 _ _ |a London
|c 2025
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1750830234_23132
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The research in Materials Science and Engineering focuses on the design, synthesis, properties, and performance of materials. An important class of materials that is widely investigated are crystalline materials, including metals and semiconductors. Crystalline material typically contains a specific type of defect called “dislocation”. This defect significantly affects various material properties, including bending strength, fracture toughness, and ductility. Researchers have devoted a significant effort in recent years to understanding dislocation behaviour through experimental characterization techniques and simulations, e.g., dislocation dynamics simulations. This paper presents how data from dislocation dynamics simulations can be modelled using semantic web technologies through annotating data with ontologies. We extend the dislocation ontology by adding missing concepts and aligning it with two other domain-related ontologies (i.e., the Elementary Multi-perspective Material Ontology and the Materials Design Ontology), allowing for efficiently representing the dislocation simulation data. Moreover, we present a real-world use case for representing the discrete dislocation dynamics data as a knowledge graph (DisLocKG) which can depict the relationship between them. We also developed a SPARQL endpoint that brings extensive flexibility for querying DisLocKG.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Fathalla, Said
|0 P:(DE-Juel1)190520
|b 1
|u fzj
700 1 _ |a Sandfeld, Stefan
|0 P:(DE-Juel1)186075
|b 2
|e Corresponding author
773 _ _ |a 10.1007/s00521-024-10674-5
|0 PERI:(DE-600)1480526-1
|p 11737-11753
|t Neural computing & applications
|v 37
|y 2025
|x 0941-0643
856 4 _ |u https://juser.fz-juelich.de/record/1034332/files/s00521-024-10674-5.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1034332
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185910
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)190520
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)186075
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Springer Nature 2020
|0 PC:(DE-HGF)0113
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURAL COMPUT APPL : 2022
|d 2023-10-21
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEURAL COMPUT APPL : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21