
S. I . : INNOVATIONS IN AI-BASED SYSTEMS AND SOFTWARE

Modeling dislocation dynamics data using semantic web technologies

Ahmad Zainul Ihsan1 • Said Fathalla1 • Stefan Sandfeld1,2

Received: 14 September 2023 / Accepted: 5 July 2024 / Published online: 14 December 2024
� The Author(s) 2024

Abstract
The research in Materials Science and Engineering focuses on the design, synthesis, properties, and performance of

materials. An important class of materials that is widely investigated are crystalline materials, including metals and

semiconductors. Crystalline material typically contains a specific type of defect called ‘‘dislocation’’. This defect signif-

icantly affects various material properties, including bending strength, fracture toughness, and ductility. Researchers have

devoted a significant effort in recent years to understanding dislocation behaviour through experimental characterization

techniques and simulations, e.g., dislocation dynamics simulations. This paper presents how data from dislocation

dynamics simulations can be modelled using semantic web technologies through annotating data with ontologies. We

extend the dislocation ontology by adding missing concepts and aligning it with two other domain-related ontologies (i.e.,

the Elementary Multi-perspective Material Ontology and the Materials Design Ontology), allowing for efficiently repre-

senting the dislocation simulation data. Moreover, we present a real-world use case for representing the discrete dislocation

dynamics data as a knowledge graph (DisLocKG) which can depict the relationship between them. We also developed a

SPARQL endpoint that brings extensive flexibility for querying DisLocKG.
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1 Introduction

Plastic deformation in metals and other crystalline mate-

rials can be attributed to a one-dimensional lattice defect

type known as dislocation. The concept of dislocation was

introduced in the 1930 s by Taylor [1] and Polanyi [2].

Dislocations determine the mechanical properties of

materials, such as strength, hardness, and ductility. For

instance, materials engineers have discovered the

strengthening mechanism of crystalline materials by

studying the relationship between dislocation motion and

the mechanical behaviour of metals [3]. By controlling the

motion of dislocations in crystalline materials, materials

engineers can build, for example, an aircraft turbine blade

that can withstand an operation temperature of � 1000�C
and creep deformation due to centrifugal forces whereas

the turbine is rotating [4]. Significant efforts have been

made to understand dislocation systems using dedicated

microscopy techniques and simulation methods. These

simulation methods, along with other techniques, have

been created to predict dislocation evolution.

In recent years, data-driven approaches have brought

new methods and tools for analyzing and understanding the

evolution of dislocation systems [5–10]. This intensely

transforms Materials Science and Engineering (MSE),

combining simulations, data mining, and experiments,

making the digital transformation possible [11, 12]. How-

ever, a digital transformation without being supported by

the appropriate data infrastructure often ends up with iso-

lated and inaccessible data repositories, the so-called ‘‘data

silos’’. In this regard, materials informatics plays a signif-

icant role in materials science research to overcome the

data silos problem. This is because materials informatics
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combines two discourses of materials science and infor-

mation technologies to tackle the major problems in

materials science, such as data management and analysis.

Moreover, it helps to develop intelligent systems to, e.g.,

explore materials, find novel material properties, or study

the behaviour of a specific material phenomenon.

To fully understand the behaviour of materials and, in

particular, dislocations, aspects from different length scales

need to be considered. This variety of length scales makes

the knowledge representation of systems of dislocations

challenging, even though this has yet to be perceived as a

significant research hindrance in materials science. Gen-

erally, the schematic representation of knowledge, i.e., the

representation through ontologies, can significantly boost

data management and analysis; it helps to extract knowl-

edge from data. Ontologies also allow the domain knowl-

edge to be machine-understandable, meaning that machines

can read and interpret this knowledge efficiently. Further-

more, it has become an essential part of achieving FAIR

(Discoverable, Accessible, Interoperable, and Reusable)

data [13].

This paper presents how Discrete Dislocation Dynamics

(DDD) data can be enriched using semantic web tech-

nologies, such as the Resource Description Framework

(RDF) [14], the Web Ontology Language (OWL) [15] and

SPARQL [16]. The first step we have taken is to adapt and

extend the dislocation ontology (DISO) [17, 18] so that it

can model various concepts and relationships in the DDD

domain. The adaptation includes adding missing concepts,

improving class definition, exploring additional relation-

ships between concepts, and finally aligning it with other

domain-related ontologies, including the Elementary

Multi-Perspective Material Ontology (EMMO) and the

Materials Design Ontology (MDO). This allows for rep-

resenting the dislocation simulation data efficiently. DISO

is one of the Dislocation Ontology Suite (DISOS)1

ontologies that represent the concepts and relationships of

linear defects in crystalline materials. DISOS comprises

several modules describing the material’s scientific con-

cepts, representations of dislocations, and different simu-

lation models in the dislocation domain. The adapted

version of DISO is developed and maintained in the DISOS

GitHub repository. The ontology is available in several

RDF serializations via a persistent identifier (i.e., https://

purls.helmholtz-metadaten.de/disos/diso) provided by

PIDA (Persistent Identifiers for Digital Assets).2 PIDA

employs content negotiation [19] to serve different ver-

sions of the ontology (i.e., the HTML documentation or an

RDF representation) via its IRI. DISO has been syntacti-

cally validated by the W3C RDF validation service3 to

conform with the W3C RDF standards. The documentation

of the ontology is available via its IRI.

The next step after adapting the ontology is to annotate

the data gathered from multiple DDD simulations with the

adapted version of DISO resulting in a knowledge graph

(DisLocKG) of DDD data (more details can be found in

Sect. 6). This knowledge graph relates DDD data concepts,

thus facilitating machine actionability [20], semantic

querying, inference of implicit knowledge, and data con-

sistency and integrity. The objective is to convert the

unstructured DDD data to linked data with dereferenceable

IRIs that adhere to W3C standards and best practices. This

will enable not only reasoning about the dislocation data

but also integrating it into other MSE-related fields. We

have made DisLocKG publicly available via its GitHub

repository.4

2 Related work

Over the past few years, many researchers have given

particular attention to developing ontologies to represent

scientific data in different fields of science, such as physics

[21], agriculture [22], and pharmaceutical science [23].

Specifically in the MSE field, several efforts have been

made to create ontologies representing materials-related

notions or semantically presenting actual materials data as

knowledge graphs. This section will discuss related works

of knowledge graphs with and without semantic web

technology (including RDF, OWL, and SPARQL). Two

examples from the latter are the Propnet Knowledge

Graph [24] and the Materials Knowledge Graph

(MatKG) [25].

The Propnet is a knowledge graph enhancing materials

properties data from the Materials Project [26] Reposi-

tory.5 It augments base properties data (e.g., lattice, basis,

chemical formula, band gap, and total energy) resulting

from the ab-initio calculation into derived properties, e.g.,

Debye temperature, bulk modulus, and shear modulus. The

workflow and input for generating the augmented data are

subsequently stored in the knowledge graph.

On the other hand, the MatKG stores metadata from

over 2.9 million materials science articles. This metadata

includes abstracts, titles, keywords, and author data (e.g.,

name, email, affiliation, and ORCID). By accessing the

MatKG, we can retrieve information such as the milestones

of a material developed by multiple authors.

[27] have developed a ‘‘Materials Ontology’’ which is

an ontology describing substances, processes,

1 https://purls.helmholtz-metadaten.de/disos.
2 https://purls.helmholtz-metadaten.de/.

3 https://www.w3.org/RDF/Validator/.
4 https://purls.helmholtz-metadaten.de/dislockg.
5 https://next-gen.materialsproject.org.
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environments, and properties. This ontology has also been

used to exchange data between three different thermal

property databases.

In the solid-state physics domain, [28] have developed

the Materials Design Ontology (MDO) which is an ontol-

ogy covering knowledge in the field of materials design,

e.g., with regards to ab-initio methods. MDO is used to

represent materials’ data related to ab-initio calculations

over disparate materials data repositories as RDF triples. At

the time of writing the paper, a total of � 4:3K RDF triples

had been collected in their repository.6 While the work is

related to the representation of crystalline material through

the crystal structure, MDO does not represent data related

to crystalline defects.

Another effort in the experimental materials science

community that uses semantic web technologies is the

NanoMine Knowledge Graph7 [29]. It is a knowledge

graph for polymer nanocomposite materials, integrating

diverse data from more than 1,700 polymer nanocomposite

experiments. Moreover, the authors of the NanoMine

knowledge graph have developed the NanoMine ontology,8

which is a backbone ontology to describe polymer

nanocomposite experiments.

In conclusion, it is evident that even though several

efforts and groups utilizing the semantic web in various

MSE-related fields have progressed significantly, work for

semantically representing dislocations simulation data is

still missing. We believe this work is a pioneering attempt

to create a knowledge graph in an MSE-related domain,

specifically dealing with dislocation data. As a result, the

unstructured dislocation data is transformed into linked

data with dereferenceable IRIs using persistent URLs,

adhering to W3C standards and best practices. This enables

not only the annotation of dislocation data by an ontology

but also the integration of dislocation data into other MSE-

related fields.

3 Description of the domain

This section briefly describes the relevant notions and

concepts of line defects within the crystalline materials

domain.

3.1 Representation of crystalline materials

Most metals and metallic materials have a crystalline

structure, which implies that the atoms are arranged in a

periodic structure with a high degree of symmetry. This

periodic arrangement is at the basis of the crystal structure

model, idealizing the physical concept of crystalline

materials. For example, in Fig. 1 atoms are shown in an

idealized manner as small spheres.

The crystal structure is represented by the lattice toge-

ther with a motif: the lattice is a mathematical concept of an

infinite, repeating arrangement of points in space (3D), in a

plane (2D), or on a line (1D), in which all points have the

same surrounding and coincide with atom positions. The

motif (or base) consists of an arrangement of chemical

species, which can be atoms, ions, or molecules in crys-

talline materials. By putting a motif of one or more atoms

at every lattice point, the crystal structure can be

represented.

It is now possible to identify the smallest atom pattern

that can be repeated along all spatial directions to cover the

entire structure. This pattern is called a unit cell, shown as

the black cube in Fig. 1. The lattice parameters of the unit

cell consist of the angles between the edges and the edge

lengths.

Figure 2 shows the six lattice parameters needed to

characterize the unit cell: three lengths (a, b, c) and three

angles (a; b; c). These parameters also constitute the basis

vectors in the crystal coordinate system; they are not nec-

essarily mutually perpendicular. Unit cells are often clas-

sified into a systematic based on the lattice parameters (cf.

Fig.3).

For instance, the cubic system has a ¼ b ¼ c; a ¼ b ¼
c ¼ 90� and the orthorhombic system has

a 6¼ b 6¼ c; a ¼ b ¼ c ¼ 90�. Seven crystal systems are

often ordered according to the increasing symmetry: cubic,

tetragonal, orthorhombic, hexagonal, rhombohedral, mon-

oclinic, and triclinic.

In the unit cell, we can also define lattice points, lattice

directions, and lattice planes: A lattice consists of lattice

points where the atoms, ions, or molecules are located (the

leftmost cube in Fig. 4). The vector position of lattice

points, R
!
, is described by the equation

R
!¼ n1aþ n2bþ n3c; ð1Þ

where ni are arbitrary integers and a; b; c are basis vectors

(pointing along the axes in Fig. 2) derived from the lattice

Fig. 1 The crystal structure of face-centred cubic comprises an

aggregate of atoms within one unit cell in crystalline materials

6 https://github.com/LiUSemWeb/materials-design-ontology.
7 http://nanomine.org/.
8 https://github.com/tetherless-world/nanomine-ontology.
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parameters. As illustrated in Fig. 4, a lattice direction or

lattice vector is a vector connecting two lattice points,

whereas a lattice plane forms an infinitely stretched plane

(characterized through a plane normal) that cuts through

lattice points such that a regular arrangement of lattice

points in the plane occurs.

As shown in the left panel of Fig. 4, so-called ‘‘lattice

points’’ can be thought of as the attachment points of the

‘‘unit cells’’-the parallelepipeds shown in grey color. The

three-dimensional position of the lattice points is described

by the vector R
!¼ n1aþ n2bþ n3c, where ni are any

integers and a;b; c are basis vectors derived from the lat-

tice parameters. Eight unit cells are adjoined at every

corner, resulting in a so-called primitive lattice: The

primitive lattice is a lattice where each unit cell corre-

sponds to exactly one lattice point. In contrast, the non-

primitive lattice is the lattice where a unit cell corresponds

to more than one single lattice point. The combination of

primitive and non-primitive lattices in 3D space defines the

14 Bravais lattices, consisting of 7 primitive and 7 non-

primitive lattices.

3.2 Description of linear defects

In crystalline materials, atoms are not always arranged or

positioned perfectly. Typically, different kinds of crystal-

lographic defects lead to disruption of the local order in a

material (in addition to thermal fluctuations affecting the

atomic positions). A common type of such defect is the

dislocation, which causes a strongly localized, tube-like

region of disorder (illustrated by the dashed circle in the

right panel of Fig. 5; this tube-like region stretches along

the z-direction).

This region contains the highly disordered dislocation

core at the center. Further away from the dislocation core,

the perfect lattice structure is restored, even though there is

now a row of atoms shifted into the new position as indi-

cated by the red spheres in Fig. 5.

The ‘‘Burgers vector’’ of a dislocation can be defined

through the ‘‘Burgers circuit’’, as shown in Fig. 6. A

Burgers circuit is an atom-to-atom path that is closed in a

perfect crystal (left panel of the figure). The length of the

path is given as a multiple of the atomic distances in two

directions. In the presence of a dislocation, a path of the

same lengths would not be closed (right panel of the fig-

ure). The step-by-step procedure is as follows: We define a

reference point C as the start point of the path. The line

sense of the path is given by n assuming the ‘‘right-hand

convention’’ (the thumb points along the vector n into the

picture plane and the other fingers curl around that vector;

their fingertips indicate the direction of the path).

Fig. 2 The geometry of a unit cell is exactly defined through the three

lengths, a, b, and c, and the three angles a, b, and c

Fig. 3 The seven crystal systems. These seven crystal systems are

also seven primitive Bravais lattices. Each of them only corresponds

to a single lattice point

Fig. 4 On the very left, a unit cell is shown that corresponds to a

‘‘face-centered cubic’’ structure. The black points indicate the lattice

points, i.e. the positions of the atoms. Second from left: a direction

vector that connects to these lattice points. Lastly, two different lattice

planes are shown

Fig. 5 The left figure shows the perfect order of atoms in a crystalline

material. The right crystal contains a dislocation that destroys the

local order of the crystal structure. Note that red-colored atoms only

show the ‘irregularity’’, and are not different atom types
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The symbol � in the figure indicates that the vector n

points into the picture plane. In the perfect crystal, this

circuit goes up five atoms from the reference point, four

atoms to the left, five atoms down, and four atoms to the

left to close a circuit at point C again. With the same

reference point and the same number of atomic spacings as

in the circuit, the perfect crystalline material can be used

with the crystal containing a dislocation. However, the

circuit does not end at the same point as in the perfect

crystal, but rather at point G as shown in the right panel of

Fig. 6. The vector connecting the start point C with the

finish point G is the Burgers vector, b.

There are two fundamentally different types of dislo-

cations: ‘‘screw’’ and ‘‘edge’’ dislocations. A screw dislo-

cation has a line sense parallel to its Burgers vector, njjb,
whereas for an edge dislocation, the line sense is perpen-

dicular to its Burgers vector, n ? b. Thus, Fig. 6 shows an

edge dislocation.

In reality, screw and edge dislocations are extreme

cases, while the most general case of a dislocation type in a

crystalline material is a ‘‘mixed dislocation.’’ This is a

dislocation with the line sense, n, neither parallel nor per-

pendicular to its Burgers vector, b.

Since the atoms around dislocations are not positioned at

the perfect lattice points, the lattice is distorted near a

dislocation. This distortion results in a stress field in the

crystalline material around the dislocation which is the

reason why dislocations move: they try to minimize

energy. In the context of plastic deformation, a dislocation

is defined as the boundary of a slipped area within which

atoms are displaced by the size of an elementary unit

translation given by the Burgers vector.

In materials science, often the question arises on which

‘‘granularity level’’ a dislocation should be defined.

Clearly, if we are interested in phenomena on the

nanometer scale, then we should resolve individual atoms

(e.g., through high-resolution transmission electron

microscopy or molecular dynamics simulations). When

taking the mesoscopic perspective, typically the individual

atoms cannot be seen anymore and are not of interest (e.g.,

done through regular transmission electron microscopy or

dislocations dynamics simulations). However, the disloca-

tion line itself is still observable: the tube-like defect ‘‘re-

gion’’ is reduced to an idealized mathematical line, as

demonstrated in the right panel of Fig. 7.

Therefore, the transition from the atomic scale to the

mesoscale requires a conceptual and mathematical ideal-

ization that significantly reduces the amount of informa-

tion. These idealizations require to be accompanied by

further details and definitions from the atomic scale,

including the crystal structure, the lattice, the lattice plane,

and the lattice direction information, all of which have an

impact on the dislocation’s motion. For example, the

motion of a dislocation line through a crystal is constrained

to a specific crystallographic or lattice plane. Thus, it still

requires crystallographic information, even though the

‘‘defect region’’ is now only represented as a mathematical

line. These two different levels of information require

particular attention when designing the dislocation

ontology.

The particular crystallographic or lattice plane con-

straining the dislocation motion is called the slip plane (see

the green plane in Fig. 8). There are specific slip directions,

which are lattice directions along which plastic deforma-

tion occurs within the slip plane, given by the Burgers

vector. A slip system is a set of slip planes with the same

unit normal vector and the same slip direction. Thus, the

unit normal vector and the slip direction or the Burgers

vector (where the latter is not a unit vector) determine the

slip system.

The mathematical representation of a mesoscale dislo-

cation, as shown in Fig. 8, is an oriented curve with a start

point and an endpoint. The local line orientation changes

along the line, while the Burgers vector is constant for each

point. Since the dislocation is a directed curve, it has a line

sense. Unlike the local line orientation, it is a property of

the whole line.

Various computational and experimental techniques are

leveraged to predict and observe dislocations in crystalline

Fig. 6 The Burgers circuit in the crystalline materials. While the left

panel has the Burgers circuit in the perfect crystal material. The right

panel has the Burgers circuit around the dislocation in the crystalline

materials. Due to the closure failure in the defective crystalline

materials, we can define the Burgers vector, b

Fig. 7 The idealization represents the dislocation in the mesoscale.

Here, the individual atoms are no longer visible. This idealization

reduced the tube-like defect ‘‘region’’ to a mathematical line. Note

that the line on the right does not correspond to the dislocation on the

left (this would be a vertical, straight line)
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materials, some of which were already mentioned above.

For instance, high-resolution transmission electron micro-

scopy (or field ion microscopy) is used on the atomic scale

to image the arrangement of atoms. On the mesoscale, the

focus is on examining the characteristics of individual

dislocations and analyzing the distribution, arrangement,

and density of dislocation in materials. Transmission

Electron Microscopy (TEM) and Discrete Dislocation

Dynamics (DDD) simulations are techniques for investi-

gating these properties and simulating dislocation beha-

viour, respectively.

TEM is a microscopy technique that generates a highly-

magnified image of a material specimen. This technique

involves an electron beam passing through the specimen

and several lenses. In strongly simplified terms, if the

electron beam hits an atom, then it is deflected. As a result

of the deflection, the intensity of the transmitted beam is

reduced, and the intensity of the diffracted beam is

increased. The dislocation can be seen as a dark line in

such a bright-field image.

Above, it was already mentioned that the displaced

atoms around a dislocation result in stresses, because the

atoms are no longer in their preferred equilibrium position.

Dislocations move in such stress fields which are mainly

described by the governing equations of (linear) elasticity

theory. DDD simulations employ mathematical lines

(polygons or splines) to represent dislocations, which are

moved based on elastic interactions and further ‘‘local

rules’’.

The numerical schemes used in DDD simulations

require to numerically discretize the mathematical line,

e.g., by a number of straight line segments. The dis-

cretization steps are illustrated in Fig. 9. Further details can

be found in [30].

The discretization process can be easiest described

based on the example of a polygonal chain. There, the

smooth mathematical line is approximated by a polygonal

chain, C. C is a curve defined by a sequence of points (P0,

P1,..., Pn), and these points are called vertices. In addition,

the curve consists of segments connecting consecutive

pairs of vertices. In general, we can define the shape of a

segment through the shape function which allows to have

not only straight line segments but also spline curves of

different order.

4 The dislocation ontology

The dislocation ontology (DISO) is developed using sev-

eral well-known ontology development methodologies,

such as [31]. The process is iterative, starting with an initial

version and continuously revising and refining the evolving

ontology. The development process is outlined in Fig. 10,

which includes the main phases, their sub-tasks, and the

roles involved.

4.1 Metadata

It is essential to provide a systematic and comprehensive

description of the ontology, also known as ontology

metadata, thus supporting its reusability and findability

[32]. When ontology metadata is missing, several potential

issues can occur. These include reduced accessibility for

potential users, decreased reusability, and ontologies not

being recognized as relevant for specific use cases.

Accordingly, several DCMI Metadata Terms9 have been

added to the ontology, involving terms:contributor,

terms:created, terms:title, and

vann:preferredNamespacePrefix.

4.2 Reuse of existing models

When developing an ontology, one of the first steps is to

utilize or reuse terms (i.e., classes or properties) from

existing ontologies that describe the same domain or sub-

ject matter. Deciding which ontologies are appropriate for

reuse is a challenging task for ontology engineers.

Fig. 8 Depiction of the mathematical dislocation line on the

mesoscale as a mathematical object that has start and end points.

The object is characterized by the Burgers vector and the line sense.

Furthermore, the dislocation motion is constrained by the slip plane

Fig. 9 The discretization of dislocation to a numerical representation.

The oriented curve dislocation line shown in the left panel is

discretized into several segments shown in the right panel

9 https://www.dublincore.org/specifications/dublin-core/dcmi-terms/.
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Ontology reuse involves several activities, including

merging, extending, specializing, or adapting other

ontologies. In DISO, we reuse concepts from two related

ontologies in the MSE domain: the Crystal Structure

Ontology10 (CSO) and the Crystalline Defect Ontology11

(CDO). CSO describes crystallographic data related to

dislocations, while CDO links physical material entities to

crystal structures and different defect types within a crystal,

such as point defects, dislocations, and planar defects.

In CDO, the EMMO:Crystal class (from the EMMO12

ontology) is reused to describe the physical entity of

crystalline materials. The CDO:CrystallineMate-

rial class is defined as a subclass of EMMO:Crystal

that is used to represent crystalline materials.

In CSO, several MDO [28] classes are reused to

describe the crystal coordinate system, the motif in a

crystal structure, point groups, and space groups. Further-

more, CSO defines the unit quantity of a property by

reusing several classes from QUDT (Quantities, Units,

Dimensions, and Data Types Ontologies) [33]. Overall, the

semantic data value of the developed ontology increases as

more ontologies are included, making the reuse of terms

from other ontologies a worthwhile undertaking [34].

4.3 Classes

Our ontology classes are separated into two groups: 1)

those imported from existing ontologies (as explained in

Sect. 4.2) and 2) newly created classes that are not already

defined in any existing ontologies.

Imported classes. DISO reuses several classes from

CSO: CSO:Lattice represents the periodic arrangement

of one or more atoms, and CSO:Vector represents

quantities with both magnitude and direction. Additionally,

DISO reuses classes from CDO, including CDO:Crys-

tallographicDefect, which represents lattice irreg-

ularity or lattice defects.

Newly defined classes. For new classes, we focus on

specific classes of crystalline materials and line defects,

including 1) Dislocation, the focal class in DISO

which represents a linear or one-dimensional defect that

causes some atoms to be displaced, 2) SlipPlane, which

models the lattice plane to which the dislocation is con-

strained to move in, 3) SlipDirection, which models

the lattice direction where the slip occurs in the crystalline

materials, 4) LatticePlane, which represents the lat-

tice plane where it forms an infinitely stretched plane that

cuts through the lattice points, 5) LatticeDirection,

which models the direction inside the lattice that connects

two lattice points, and 6) DiscretizedLine, which

provides a numerical representation of the dislocation line

as a mathematical line, such as an oriented curve, that is

discretized into several segments (cf. Fig. 11).

Fig. 10 The workflow of the dislocation ontology development which illustrates the main phases, subprocesses, and roles involved in the whole

process

10 https://purls.helmholtz-metadaten.de/disos/cso.
11 https://purls.helmholtz-metadaten.de/disos/cdo.
12 https://github.com/emmo-repo/domain-crystallography.
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4.4 Properties

Similarly, both data and object properties in DISO are

divided into two categories: newly defined properties and

reused ones.

Newly defined properties. Object properties constitute

the relationship between various concepts in the ontology.

For instance, the relationship between Transmis-

sionElectronMicroscopy and Dislocation

classes can be represented through the observedBy

object property. Similarly, the hasLineSense object

property represents the relationship between Disloca-

tion and LineSense. Additionally, several data prop-

erties, including directionMillerIndice and

planeMillerIndice are defined, which typically

provide a relation to attaching an entity instance to some

literal datatype value, such as a string or a date.

Reused properties. Several properties from the reused

ontologies have been used, e.g., cso:hasPosi-

tionVector, cdo:hasCrystallo-

graphicDefect, mdo:hasComposition, and

emmo:hasProperty from the CSO ontology, CDO

ontology, MDO ontology, and EMMO ontology,

respectively. Moreover, we reused several data properties

from DCterms for adding ontology metadata (see

Sect. 4.1). After defining new properties and identifying

reused ones, the domain and range for each property using

rdfs:domain and rdfs:range are defined, respec-

tively. For instance, the domain of the data property

diso:planeMillerIndice is diso:Lat-

ticePlane and the range is xsd:string. while the

domain of the object property diso:hasLat-

ticePoint is diso:LatticePlane and the range is

diso:LatticePoint.

Restricting properties. In DISO, several classes use

property restrictions, e.g., value constraints. For example,

the resultsIn property which connects Dislocation

and LatticeDisplacement is restricted by a value

constraint of owl:someValuesFrom representing the

fact that every dislocation individual results in some or at

least one lattice displacement individual(s). The hasLi-

neSense property which connects Dislocation and

LineSense is restricted by a value constraint of

owl:allValuesFrom representing that every disloca-

tion individual can only have a line sense individual.

Fig. 11 Core concepts and interconnected relationships in DISO.

Arrows with open arrowheads denote rdfs:subClassOf proper-

ties between classes. Regular arrows represent rdfs:domain and

rdfs:range restrictions on properties and coloured boxes represent

classes belonging to different ontologies, e.g., yellow boxes represent

DISO’s classes
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4.5 Reasoning

DISO’s inference capability is increased through the use of

several property characteristics, such as functional rela-

tions, transitivity, and the inverse property [35].

hasMathematicalRepresentation is a functional

property because it means that a dislocation can be repre-

sented by exactly one mathematical line, i.e., it can not

have any different mathematical representation than that.

The transitive property can be demonstrated through the

hasRepresentation relationship. This relationship

refers to the connection between a dislocation and its

representation. For instance, if a dislocation has a line

representation, and this line has a discretized line repre-

sentation, it can be inferred that the dislocation also has a

discretized line representation.

To enable bidirectional navigation between two classes

in the ontology, inverse properties are established for each

corresponding property. For instance, the isSegmentOf

property is the inverse property of hasSegment. This

means that if a discretized line A has a segment B, then B

is a segment of A.

5 Ontology alignment

Ontology alignment is the process of identifying relations

between entities among different ontologies to establish

connections between them [36]. These entities include

classes, properties, and individuals. For successful ontol-

ogy alignment, it is crucial to identify similarities between

source and target ontologies. The analysis entails examin-

ing concepts that overlap but may have different names

(i.e. synonyms) or types in the ontologies [37].

This section will cover the extension of DISO, which

involves aligning two ontologies, namely EMMO and

MDO. This alignment plays a crucial role in allowing

DISO to annotate the DDD data and transform it into

linked data while also facilitating knowledge graph

generation.

5.1 Alignment with EMMO

EMMO is a continuous initiative aimed at establishing

semantic standards that can be implemented at the highest

level of abstraction. This makes it possible for all potential

domain ontologies, especially in the MSE field, to be

integrated and to work together seamlessly. EMMO offers

two essential modules: a top-level module and a mid-level

module. The former includes the fundamental axioms that

constitute the philosophical foundation of the EMMO,

while the latter consists of a set of perspectives to develop

more specialized domain ontologies. These two ontologies

serve as the basis for building further domain and appli-

cations ontologies, e.g., the application of EMMO in the

domain of mechanical testing [38].

The starting point to align DISO with EMMO is by

aligning with the Crystallography Domain Ontology,13 a

domain ontology based on EMMO and the CIF core dic-

tionary.14 As shown in Fig. 12, CDO:Crystallo-

graphicDefect subsumes Dislocation, while also

being a subclass of EMMO:Crystallographical

class. Similarly, EMMO:CrystalStructure, an

equivalent class to CSO:CrystalStructure, is also a

subclass of EMMO:Crystallographical. Overall,

EMMO:Crystallographical is a class that ideally

represents the physical concepts associated with crystalline

materials.

As we mentioned in Sect. 3, on the mesoscale, a dislo-

cation is represented by a mathematical line, which can be

further idealized as a pixel or discretized line depending on

the application (e.g., microscopy or simulation). To align

the dislocation mathematical line concept with an EMMO

class, EMMO:MathematicalModel subsumes Line

and the discretized representation of the mathematical

dislocation line, DiscretizedLine, is subsumed

EMMO:Numerical.

5.2 Alignment with MDO

The MDO is a domain ontology that defines concepts and

relations to cover the knowledge of materials design,

especially in the ab-initio calculation. MDO consists of

several modules, a Core, the Provenance module, and two

domain-specific modules: Structure and Calculation.

To align DISO with the MDO, we reused several classes

in the MDO Core module. The MDO Core module

describes the structure or the virtual specimen of interest

via MDO:Structure class. As shown in Fig. 13, we

defined a DislocationStructure class as a subclass

of MDO:Structure. This class describes a dislocation

(micro)structure, which is a virtual specimen used by a

DDD simulation to study the mechanical properties of a

crystalline material. Furthermore, Disloca-

tionStructure as an idealized representation relates to

a physical concept called

CDO:CrystallineMaterial.

In the MDO Core module, an instance of the

MDO:Structure class is used as a virtual specimen

input or output for a simulation. Here, the simulation

concept is represented as the MDO:Calculation class.

We subsumed the MDO:Calculation class to define the

13 https://github.com/emmo-repo/domain-crystallography.
14 https://www.iucr.org/resources/cif/dictionaries/cif_core.
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Fig. 12 DISO alignment with EMMO. The starting point to align DISO with the EMMO by importing the domain ontology crystallography

developed by EMMO

Fig. 13 DISO alignment with the MDO core and provenance module
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DDDSimulation class, which is a class to describe the

DDD simulation. Thus, the DDDSimulation can have

DislocationStructure as an input or an output.

Moreover, the DDDSimulation has an input and output

relationship with MDO:Property to run a calculation. In

addition, the DDDSimulation is related to the

DDDSimulationParameter, a simulation parameter

concept configuring the DDD simulation, e.g., the activa-

tion parameter for cross-slip, junction formation, and

external load.

To preserve the provenance information of a DDD

simulation, we reused several classes from the MDO

Provenance module and the PROV ontology [39]. Running

a DDD simulation requires specific software to solve

materials science problems. It is quite helpful to store

information about the software used and its version, as this

can help scientists reuse data through post-processing

methods specific to DDD software. In this regard,

DDDSimulation has a relationship with

PROV:SoftwareAgent, which has two data properties:

softwareVersion and MDO:softwareName. Fur-

thermore, to preserve the provenance information related to

when a DDD simulation starts and ends, PROV:Activ-

ity subsumed the DDDSimulation and inherited two

data properties: PROV:startedAtTime and PRO-

V:endedAtTime. Apart from that, we reused

PROV:Person to annotate the person running or

responsible for the simulation. It has three data properties

to define a person: FOAF:firstName, FOAF:fam-

ily_name, and MWO:hasORCID. The latter is a data

property that we reused from the MatWerk Ontology

(MWO)15.

To summarize, core concepts and interconnected rela-

tionships in DISO after the alignment can be seen in

Fig. 14. The advantages of ontology alignment for DISO

are promoting knowledge transfer from other ontologies

when describing the DDD simulation. Furthermore,

ontology alignment fosters interoperability between

ontologies in MSE-related domains. The objective is to

assist in building a knowledge graph for the dislocation

domain.

Fig. 14 The core concepts in DISO ontology after the alignment with

MDO and EMMO. Arrows with open arrowheads denote rdfs:-
subClassOf properties between classes, while regular arrows

represent the relationships between them. Classes that belong to the

same ontology share the same color

15 http://purls.helmholtz-metadaten.de/mwo/
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6 The dislocation knowledge graph

In the field of materials science, researchers utilize a

numerical method known as ‘‘DDD simulation’’ to analyze

the behaviour of dislocations within crystalline materials.

This technique helps to identify the specific characteristics

of each dislocation, as well as their interaction, arrange-

ment, and collective behaviour within the material. The

simulation observes the motion and interaction of many

dislocations which ultimately creates the relationship

between the microstructure, loading conditions, and the

mechanical properties of a crystalline material. For simu-

lations of dislocations, there are various software options

available such as MoDELib [40], ParaDiS [41], and

microMegas [42]. Every software is equipped with a

specific set of metadata that effectively organizes the inputs

and outputs of the simulation.

DISO was utilized in this specific scenario to accurately

annotate the information collected from various DDD

simulations. The ultimate goal is to generate a compre-

hensive dislocation knowledge graph (DisLocKG) using

this data. The DDD data used in this work was generated

through the MoDELib software and took different initial

dislocation densities and specimen sizes into account. The

cube-shaped Copper specimen, with an edge length of

either 50 or 100 nanometers, was randomly filled with

dipolar edge loops on all slip systems until the initial

density of either 1 � 1016 m�2 or 5 � 1016 m�2 was reached.

A sample of the generated cube-shaped Copper specimen

can be seen on the left panel of the Fig. 15. During the

simulation, the dislocation microstructure was allowed to

relax without any external load, meaning that internal

stress and image forces solely influenced the dislocation

evolution. The simulation resulted in the relaxed disloca-

tion microstructure shown on the right-hand side of

Fig. 15. An important aspect for a materials scientist is that

some simulations do not have cross-slip or junction for-

mation. This has significant implications when it comes to

analyzing simulation results. E.g., [43] investigated the

influence of cross-slip on the evolution of dislocation

structures and therefore could benefit from this

information. Such relaxation calculations are also impor-

tant for creating a realistic microstructure. For example,

[44] investigated how the relaxed dislocation microstruc-

ture influences the plasticity in subsequent tensile test

simulations. Furthermore, several authors [9, 45–47] con-

ducted machine learning and data mining studies utilizing

the dislocation relaxed microstructure to classify the

structure and express the strain energy density of a dislo-

cation microstructure, respectively. This explains why

there is a strong need for a detailed and formal represen-

tation of such simulations, i.e., the class

DDDSimulation.

For our example, we have collected a total of 25 data

points, where each data point is one DDD simulation

consisting of an initial and final microstructure. Each of

those was annotated with DISO. Any data point gives

information about the simulation details, such as the

parameters used for the simulation, the initial dislocation

microstructure used as input, and the resulting dislocation

microstructure produced by the simulation. Additionally,

each dislocation microstructure includes information about

the crystal structure, Bravais lattice, dislocation, slip plane,

Burgers vector, and numerical representation of disloca-

tion. The results of the simulations are stored and parsed in

the HDF516 format. Subsequently, we utilize our in-house

Python scripts (using the RDFLib 6.0 [48] Python library)

to create a knowledge graph called DisLocKG from this

data using DISO as a reference ontology (cf. Fig.16). The

DisLocKG is a semantic network that holds information

about dislocations in crystalline materials. DisLocKG

preserves the provenance information associated with the

data, including the creator’s data, software, and the corre-

sponding software version employed in data generation. In

total, we have generated � 2:2M RDF triples, which are

available through its persistent identifier.17

Publishing DDD data as linked data has several bene-

fits [49], including 1) establishing links between disloca-

tion-related datasets, enabling machines to understand and

discover new information, 2) supporting semantic querying

via the SPARQL query language, 3) supporting data

enrichment, where machines can infer implicit knowledge

that does not exist, and 4) promoting semantic validation of

the data, ensuring consistency and accuracy.

We have listed some competency questions in Table 1 to

illustrate the vast information available in DisLocKG and

which questions it can answer. For instance, CQ1 can

retrieve the history and origin information of DDD data

generated by the MoDELib software, and CQ2 and CQ3

can retrieve information on the specimen geometry and the

initial dislocation of each dislocation simulation. These

Fig. 15 Sample of dislocation microstructures used as input for

simulation as well as yielded by the simulation as output

16 https://www.hdfgroup.org/solutions/hdf5/.
17 https://purls.helmholtz-metadaten.de/dislockg.
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CQs are important if one wants to query a dislocation

simulation to be reused for the processing step if they need

a specific density of a dislocation structure and information

concerning the geometry. For instance, [43] used the

information about dislocation density from a dislocation

structure to study the influence of cross-slip; the geometry

information is one of the components used in the so-called

‘‘D2C method’’ used for this type of analysis [50, 51] The

D2C method was developed to convert discrete dislocation

data to continuous field data. CQ4 retrieves the input

parameters to run the simulation, while CQ5 queries all

dislocation structures generated by the relaxation calcula-

tion. The SPARQL query corresponding to CQ3 is shown

in Listing 1, and the complete set of the competency

questions and the corresponding SPARQL queries can also

be found in DISO’s GitHub repository. Figure 17 visual-

izes the results of CQ3, which contains three individuals

(shown as the red markers) of the DDD simulation class.

Each of the DDD simulation individuals has a relationship

with dislocation structure individuals. Moreover, the dis-

location density data relates to the dislocation structure

individual.

Fig. 16 DDD simulation data as linked data. Colored rectangles on

the left depict data types in the DDD simulation: dislocation structure,

provenance, simulation parameters, and crystal structure data. The

data subsequently is linked using DISO as a reference ontology. The

rdflib Python module supports data linking and generates the

DisLocKG. Via the SPARQL Endpoint, end users can query the data

to retrieve the information in the DisLocKG

Table 1 A sample of competency questions for DisLocKG

No. Question

CQ1 Provide detailed information on the dislocation structures simulated using the MODELIB software, including the software version and

creator associated with these simulations

CQ2 Which dislocation structures possess a specimen shape resembling a cube with an edge length greater than 30 nanometers?

CQ3 List all DDD simulations that have an initial density of dislocation ¼ 5e16 m�2

CQ4 List all DDD simulations that do not activate the cross slip formation and junction formation

CQ5 What are dislocation structures generated by the relaxation calculation? List also the initial density of a dislocation structure used for a

relaxation calculation; the simulation parameters are: cross-slip activation, junction formation activation, and external load activation
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7 Evaluation

Employing predefined metrics that evaluate an ontology’s

richness through criteria-based assessment is one way of

evaluating its quality [34]. In this section, we evaluate the

adapted version of DISO using the OntoQA [52] evalua-

tion model.

This model can assess an ontology based on two

dimensions: schema and instances. Here, we focus on the

schema evaluation, which evaluates the quality of the

ontology’s design. We determine the effectiveness of the

ontology and its ability to represent rich knowledge using

the following metrics:

• Relationship richness (RR) shows the diversity of

relations and placement of relations in the ontology

(Eq. 2).

RR ¼ jPj
jSCj þ jPj ð2Þ

where P is the number of relationships and SC is the

number of sub-classes. The more relations an ontology

owns, the richer it is (is-a relations are not considered).

• Attribute richness (AR) shows that the more attributes

are defined, the more knowledge the ontology delivers

(Eq. 3).

AR ¼ jAT j
jCj ð3Þ

where AT is the number of attributes for all classes and

C is the number of classes.

• Inheritance richness (IR) describes the distribution of

information across different levels of the ontology

inheritance tree. IR indicates how knowledge is clas-

sified into different classes and subclasses in an

ontology. (Eq. 4).

IR ¼ jSCj
jCj ð4Þ

In Table 2, we compare the evaluation outcomes of DISO

with MDO [28], CSO18 and the previous version of DISO.

DISO has the most significant value of RR, which implies

that it has a greater relation diversity. Moreover, DISO has

the highest IR value, representing a more comprehensive

knowledge range than MDO, CSO, and the previous ver-

sion of DISO. The AR value of DISO is lower than that of

MDO and higher than CSO and the previous version of

DISO. To conclude, DISO possesses the most extensive

knowledge representation and diversity in terms of rela-

tionships, achieving the highest IR and RR, respectively.

Moreover, the adapted version of DISO surpasses its pre-

decessor in all evaluation metrics.

8 Conclusion and outlook

This paper showcases how semantic web technologies can

transform unstructured DDD data into well-organized and

structured data. Structuring data in the form of a knowl-

edge graph can offer several advantages, such as being able

to create links between different datasets related to dislo-

cations, facilitating semantic querying through the

SPARQL query language, enabling data enrichment by

inferring implicit knowledge, and ensuring consistency and

accuracy of the data through semantic validation. Fur-

thermore, we extended the dislocation ontology by aligning

it with commonly used materials science ontologies (i.e.,

EMMO and MDO core) to be able to model simulation

data efficiently. Moreover, we presented a real-world use

case that utilized DISO to construct a semantic network of

DDD data (i.e., linked data) called DisLocKG, where

individual entities are connected, enabling semantic query

and supporting intelligent tasks. To support querying Dis-

LocKG, the graph has been made publicly available, and

steps to set up a SPARQL endpoint are described in its

GitHub repository. The evaluation results indicate that the

adapted version of DISO is the most comprehensive and

18 https://purls.helmholtz-metadaten.de/disos/cso.
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diverse knowledge representation among the state-of-the-

art ontologies.

Materials data from different simulations often show

similarities; such datasets typically consist of structure,

simulation parameters, and provenance information. We

identified that this study can be leveraged at least as a solid

starting point in other domains (e.g., point defects and

planar defects) and simulation on various scales (e.g., ab-

initio calculation, molecular dynamics, and finite-element

methods).

In the future, we plan to improve DISO by modelling the

linear elasticity theory of dislocations and demonstrating

other real-world use cases, including modelling results of

other DDD simulation software, such as ParaDiS and

MicroMegas, molecular dynamics data, and materials

experimental data (e.g., Transmission Electron Microscopy

Data). In addition, developing the DisLocKG Application

Programming Interface (API) will also be a worthwhile

undertaking. The idea is to develop several interactive

features via an API, e.g., querying, data mining, visualiz-

ing, updating, and deleting data within the DisLocKG.

DISO and DisLocKG will continue to be maintained and

extended in the context of the Helmholtz Metadata Col-

laboration (HMC) and NFDI-MatWerk efforts to facilitate

machine readability and efficiently handle research data.
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Forschungszentrum Jülich (FZJ). We are grateful to Aytekin Demirci

for the MoDELib parser that we used.

Funding Open Access funding enabled and organized by Projekt

DEAL.

Data availability The datasets used to generate the knowledge graph

are available in https://purls.helmholtz-metadaten.de/dislockg.

Declarations

Conflict of interest The authors have no Conflict of interest to

declare.

Fig. 17 A visual representation of CQ3 results. Colored boxes

represent classes and the red dot represents an individual belonging to

that class. Each individual is defined by a directed arrow having the

rdf:type relationship to the respective class and connected to other

individuals by object properties

Table 2 Evaluation of DISO compared to DISO v1.0, MDO and CSO

using the OntoQA model. C is the number of classes, SC is the

number of sub-classes, AT is the number of attributes, and P denotes

the number of relationships

Ontology C SC AT P RR AR IR

MDO 37 49 32 32 0.40 0.86 1.32

CSO 30 49 19 25 0.34 0.63 1.63

DISO v1.0 33 62 12 33 0.35 0.32 1.63

DISO v1.1 70 116 47 80 0.41 0.67 1.66
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