001034337 001__ 1034337
001034337 005__ 20250314090649.0
001034337 0247_ $$2doi$$a10.1038/s41467-024-54022-6
001034337 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-07122
001034337 0247_ $$2pmid$$a39668158
001034337 0247_ $$2WOS$$aWOS:001377360000005
001034337 037__ $$aFZJ-2024-07122
001034337 082__ $$a500
001034337 1001_ $$0P:(DE-Juel1)185960$$aGell, Martin$$b0$$eCorresponding author
001034337 245__ $$aHow measurement noise limits the accuracy of brain-behaviour predictions
001034337 260__ $$a[London]$$bNature Publishing Group UK$$c2024
001034337 3367_ $$2DRIVER$$aarticle
001034337 3367_ $$2DataCite$$aOutput Types/Journal article
001034337 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734353562_21960
001034337 3367_ $$2BibTeX$$aARTICLE
001034337 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001034337 3367_ $$00$$2EndNote$$aJournal Article
001034337 520__ $$aMajor efforts in human neuroimaging strive to understand individual differences and find biomarkers for clinical applications by predicting behavioural phenotypes from brain imaging data. To identify generalisable and replicable brain-behaviour prediction models, sufficient measurement reliability is essential. However, the selection of prediction targets is predominantly guided by scientific interest or data availability rather than psychometric considerations. Here, we demonstrate the impact of low reliability in behavioural phenotypes on out-of-sample prediction performance. Using simulated and empirical data from four large-scale datasets, we find that reliability levels common across many phenotypes can markedly limit the ability to link brain and behaviour. Next, using 5000 participants from the UK Biobank, we show that only highly reliable data can fully benefit from increasing sample sizes from hundreds to thousands of participants. Our findings highlight the importance of measurement reliability for identifying meaningful brain–behaviour associations from individual differences and underscore the need for greater emphasis on psychometrics in future research.
001034337 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001034337 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001034337 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b1
001034337 7001_ $$0P:(DE-Juel1)188339$$aOmidvarnia, Amir$$b2
001034337 7001_ $$0P:(DE-Juel1)180212$$aKüppers, Vincent$$b3
001034337 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b4
001034337 7001_ $$0P:(DE-HGF)0$$aSatterthwaite, Theodore D.$$b5
001034337 7001_ $$0P:(DE-Juel1)131699$$aMüller, Veronika I.$$b6
001034337 7001_ $$0P:(DE-Juel1)131693$$aLangner, Robert$$b7$$eCorresponding author
001034337 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-024-54022-6$$gVol. 15, no. 1, p. 10678$$n1$$p10678$$tNature Communications$$v15$$x2041-1723$$y2024
001034337 8564_ $$uhttps://juser.fz-juelich.de/record/1034337/files/s41467-024-54022-6.pdf$$yOpenAccess
001034337 8767_ $$8SN-2024-01621-b$$92025-02-20$$a1200211890$$d2025-02-26$$eAPC$$jZahlung erfolgt
001034337 8767_ $$8SN-2024-01621-b$$92025-02-20$$a1200211890$$d2025-02-26$$eAPC$$jZahlung angewiesen$$zKosten über 3000€
001034337 909CO $$ooai:juser.fz-juelich.de:1034337$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001034337 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185960$$aForschungszentrum Jülich$$b0$$kFZJ
001034337 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)185960$$a Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University$$b0
001034337 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b1$$kFZJ
001034337 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b1
001034337 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188339$$aForschungszentrum Jülich$$b2$$kFZJ
001034337 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180212$$aForschungszentrum Jülich$$b3$$kFZJ
001034337 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b4$$kFZJ
001034337 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131699$$aForschungszentrum Jülich$$b6$$kFZJ
001034337 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131699$$a HHU Düsseldorf$$b6
001034337 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131693$$aForschungszentrum Jülich$$b7$$kFZJ
001034337 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131693$$a HHU Düsseldorf$$b7
001034337 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001034337 9141_ $$y2024
001034337 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29
001034337 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
001034337 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29
001034337 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001034337 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-29
001034337 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001034337 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
001034337 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2025-01-02
001034337 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001034337 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001034337 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-30T07:48:07Z
001034337 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-30T07:48:07Z
001034337 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2024-01-30T07:48:07Z
001034337 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001034337 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-02
001034337 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-02
001034337 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
001034337 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
001034337 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
001034337 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001034337 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2025-01-02
001034337 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001034337 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001034337 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001034337 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001034337 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001034337 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001034337 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x1
001034337 9801_ $$aFullTexts
001034337 980__ $$ajournal
001034337 980__ $$aVDB
001034337 980__ $$aUNRESTRICTED
001034337 980__ $$aI:(DE-Juel1)INM-7-20090406
001034337 980__ $$aI:(DE-Juel1)IET-1-20110218
001034337 980__ $$aAPC