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Major efforts in human neuroimaging strive to understand individual differ-
ences and find biomarkers for clinical applications by predicting behavioural
phenotypes from brain imaging data. To identify generalisable and replicable
brain-behaviour prediction models, sufficient measurement reliability is
essential. However, the selection of prediction targets is predominantly gui-
ded by scientific interest or data availability rather than psychometric con-
siderations. Here, we demonstrate the impact of low reliability in behavioural
phenotypes on out-of-sample prediction performance. Using simulated and
empirical data from four large-scale datasets, we find that reliability levels
common across many phenotypes can markedly limit the ability to link brain
and behaviour. Next, using 5000 participants from the UK Biobank, we show

that only highly reliable data can fully benefit from increasing sample sizes
from hundreds to thousands of participants. Our findings highlight the
importance of measurement reliability for identifying meaningful
brain-behaviour associations from individual differences and underscore the
need for greater emphasis on psychometrics in future research.

Major ongoing efforts in human neuroimaging research aim to
understand individual differences and identify biomarkers for clin-
ical applications. One particularly promising approach in this regard
is the prediction of clinically relevant phenotypes in individuals (e.g.
symptoms, treatment response, intellectual abilities) from functional
and structural brain measurements'”. Patterns of resting-state
functional connectivity, defined as the statistical relationship (typi-
cally Pearson’s correlation) between regional time courses of brain
activity, have been widely used as brain features for the prediction
of behavioural phenotypes**. Much of previous research has focused
on developing and improving such predictive modelling
approaches®®, However, thus far, accuracies have remained too low
to provide major insights into neural substrates of individual differ-
ences in behaviour or reach clinical relevance’™.

An essential prerequisite for identifying replicable
brain-behaviour  associations is  sufficient reliability = of
measurements'*”. In psychometrics, reliability broadly reflects the
consistency of scores across replications of a testing procedure
(Standards for Educational and Psychological Testing, 2014)". In the
context of individual differences research, test-retest reliability has
received the most attention, as it reflects the degree to which a
measure ranks individuals consistently across multiple occasions (i.e.
low performers remain low performers on repeated testing). Note
that this assumes the measure in question assesses a stable char-
acteristic of the individual or the amount of change between occa-
sions does not differ between individuals (e.g., due to practice from
repeated testing). Test-retest reliability is typically evaluated by
intraclass correlation (ICC), which is the ratio of between-subject
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variance and total variance, composed of between-subject, within-
subject and error variances (see McGraw and Wong" for a detailed
discussion). Measurement noise, understood as the random varia-
bility that produces a discrepancy between observed and true values
(or repeated observations), is therefore tightly related to reliability as
it contributes to error variance in the calculation of ICC. That is, a
high level of noise results in low reliability if the between-subject
variance is held constant. ICC can range from 1 to O and is often
interpreted as excellent for ICC > 0.8, good for 0.6-0.8, moderate for
0.4-0.6 and poor for <0.4'%%,

While a large amount of focus has been put on assessing the
reliability of brain-based measures’®? and ways to improve
them”?"%, the reliability of behavioural assessments used as pre-
diction targets has been largely neglected. Selecting scientifically
or clinically relevant targets for prediction is often guided by
pragmatism and logistic constraints (e.g., dataset availability),
rather than considerations of reliability or criterion validity. Fur-
thermore, classical experimental paradigms collected in many
studies may not be well suited for investigating individual differ-
ences as between-subject variance in such paradigms is often low
by design, resulting in low reliability'®. Finally, current assessments
of the test-retest reliability of behavioural measures commonly
used in the literature show that most fall below the ‘excellent’
reliability’®*® that is required for clinical applications'®*~*, A recent
meta-analysis by Enkavi and colleagues (2019) showed the median
reliability of 36 tasks assessing self-regulation was on the border of
good and moderate (ICC =0.61), and newly collected data for the
same tasks showed even poor reliability (ICC=0.31). Similarly,
assessments of reliability in large datasets and longitudinal sam-
ples have reported lower estimates than those reported in test
manuals, which often report reliability assessed over relatively
short retest intervals® =%,

Low measurement reliability is problematic as it attenuates
existing relationships between variables. In statistical analyses (e.g.
correlation), this is manifested by lowering the upper bound on
maximum identifiable effect size®. In the context of machine learn-
ing, low reliability can have a profound impact on model perfor-
mance by lowering signal-to-noise ratio. Label or target noise (akin to
measurement noise) reduces the accuracy of classification
algorithms® and increases uncertainty in parameter estimates,
training time® as well as the complexity of a given problem™®, As a
consequence, if reliability is too low, models may fit variance of no
interest (e.g., measurement noise) during training. This, in turn,
results in poor generalisation performance or a failure to learn
altogether. Therefore, low out-of-sample prediction accuracy may be
a consequence of unreliable targets rather than a weak underlying
association. This, in turn, can hamper the investigation of
brain-behaviour relationships and strongly undermine efforts
directed at biomarker discovery.

Due to effect size attenuation, low reliability also increases the
sample sizes necessary to identify effects®*. Similarly, targets with
higher measurement noise require larger training sets to achieve
comparable classification accuracy to less noisy targets**2., As a
consequence, the estimated strength of brain associations with
behavioural phenotypes will be attenuated and require very large
samples to become stable®. These considerations make large data-
sets for biomarker discovery a necessity rather than an advantage,
which in turn poses undesirable logistical, financial and ethical
challenges.

Here, we investigate how test-retest reliability of behavioural
phenotypes impacts their predictability in typical studies of
brain-behaviour relationships. Using a simulation approach and
empirical data from four large-scale datasets, we show that low relia-
bility systematically reduces out-of-sample accuracy when predicted
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Fig. 1| Impact of reliability on prediction accuracy in the HCP-A dataset.

a Impact of directly reducing the reliability of age on prediction accuracy (amount
of target score variance explained by predicted scores as indicated by R?). Each
boxplot summarises the accuracy of predicting 100 simulated datasets within each
reliability band and is centred at the median, with the bounds representing the
interquartile range and whiskers the min/max values. b Impact of reducing the
correlation between original and simulated target scores (reflecting reduced

reliability) on accuracy in prediction of total cognition composite score, crystal-
lised cognition composite score and grip strength. X-axis was adjusted for indivi-
dual behaviour reliability. Solid lines represent the mean accuracy across all

100 simulated datasets in each reliability band, shaded areas represent 2 standard
deviations in accuracies. ¢ Effect of random noise on variability in prediction
accuracy. The colour legend is common for panels b and c.

Nature Communications | (2024)15:10678


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-024-54022-6

from functional connectivity. Furthermore, using a sample of 5000
adults, we illustrate the tradeoff between reliability and sample size.

Results

Low phenotypic reliability reduces the accuracy of
brain-behaviour predictions

To systematically test the impact of target reliability on out-of-sample
prediction accuracy, we simulated behavioural assessments with
reduced test-retest reliability using empirical data from the Human
Connectome Project Aging dataset (HCP-A) as a basis. Reliability was
manipulated by incrementally increasing the proportion of random
noise within the target variable.

As a proof of principle, we first present results for participant age
prediction (n=647). As expected, systematically reducing the relia-
bility of age resulted in a sharp decrease in accuracy as measurement
noise increased (Fig. 1a). Crucially, every 0.2 drop in reliability reduced
the coefficient of determination (R?) on average by 25%. Mean absolute
error (MAE) and correlation of predicted and observed scores followed
a similar pattern (Supplementary Results Fig. 1). The observed rate of
change in accuracy replicated in the UK Biobank dataset (UKB; Sup-
plementary Results Fig. 2) and was robust to variations in parcellation
(Supplementary Results Fig. 3) and algorithm choice (Supplementary
Results Fig. 4). Reducing the reliability of resting-state functional
connectivity by shortening scan duration reduced the overall predic-
tion accuracy, but did not impact the pattern of change in R* (Sup-
plementary Results Figs. 5 and 6).

Next, we investigated the attenuation of prediction accuracy that
can be expected in typical studies of brain-behaviour associations by
systematically adding noise to the most reliable measures (ICC = 0.9)
available in the HCP-A dataset (n =550, Supplementary Table 4). This
way we simulated new phenotypes with reliabilities that are common
in neuropsychological assessments and have plausible true effect
sizes. Total cognition could be predicted with an accuracy of R>=0.23
(MAE =10.37), crystallised cognition with R*=0.22 (MAE =10.24) and
grip strength with R2=0.19 (MAE=9.79). Similarly to age, reducing
their reliability resulted in a decrease in prediction accuracy (Fig. 1b).
For all three assessments, R* halved when simulated data reached
reliability of approximately 0.6 (R*otal cog. = 0.12; R¥crystalized cog. = 0.1;
RPgrip strengen = 0.1). Importantly, analysis choices such as confound
regression, feature space or feature reliability resulted in small varia-
tions in prediction accuracy on empirical and simulated data but had
no impact on the rate at which performance decreased (Supplemen-
tary Results Figs. 7-9). For MAE and correlation between predicted and
observed scores, see Supplementary Results Fig. 10.

We note that prediction accuracy could vary by 0.1 R* or more
between the best and worst-performing simulated datasets for the same
level of noise. When reliability reached 0.5 or lower, a value not
uncommon for behavioural assessments, such variability could lead to
large fluctuations in accuracy that would warrant different conclusions
regarding the success of predictions (Fig. 1c). For example, in grip
strength prediction, the accuracy at reliability r=0.46 ranged from
R?=-0.01 to R*=0.12 acorss all hundred models. All results were cor-
rected by the reliability of phenotypes estimated in previous work
(ICCiotal cog. = 0944: lCccrystallized cog. = 0-8644; ICCgrip strength = 0-9345)-
As these can vary between studies, we also provide uncorrected results
assuming perfect reliability of phenotypes to display more general
trends in Supplementary Results Fig. 11.

Target reliability is related to prediction accuracy

Next, we directly investigated the relationship between reliability
and brain-behaviour prediction accuracy in empirical data where
reliability could be estimated. Using test-retest data from the Human
Connectome Project dataset Young Adult (n=46; HCP-YA) and
follow-up data from the UKB dataset (n=1890), we estimated the
reliability of 36 behavioural assessments in HCP-YA (ICCs=

0.25-0.89; median ICC = 0.63; Supplementary Results Fig. 12) and 17
assessments in UKB (ICCs=0.22-0.81; median ICC=0.54; Supple-
mentary Results Fig. 13). The resulting reliability was then correlated
with their prediction accuracy in the respective full sample (HCP-
YA =771; UKB =5000) (Fig. 2).

Based on our simulation results, we expected an increasing
attenuation of prediction accuracy as assessment reliability decreased.
Confirming this, R? displayed a substantial correlation with test-retest
reliability in the HCP-YA dataset (r(34) = 0.62, p <0.001, 95% CI [0.37,
0.79]) and the UKB dataset (r(15) = 0.65, p <001, 95% CI [0.25, 0.86])
even though retest intervals were longer (mean retest =2 years and 6
months compared to 5 months in HCP-YA). This was also replicated in
the ABCD dataset despite likely developmental effects on reliability
and prediction accuracy (r(23) =0.85, p<0.001, 95% CI [0.69, 0.93];
Supplementary Results Fig. 14). Given the small number of retest
participants (n=46) in HCP-YA, we also correlated R? with the lower
and upper bounds of the ICC and observed the same relationship
(r(34) =0.54, p<0.001, 95% CI [0.25, 0.74] and r(34) = 0.61, p< 0.001,
95% CI [0.36, 0.78], respectively). As models with negative R* values
may not be comparable in accuracy, we also correlated only models
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Fig. 2 | Association between reliability and prediction accuracy. a HCP-YA and
(b) UKB dataset. Each data point represents a behavioural assessment in each
dataset. Correlations between reliability and prediction accuracy are indicated in
the plot. For degrees of freedom and confidence intervals, please see the text.
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Fig. 3 | Prediction and subsampling in UKB. Impact of training set size on original
and simulated data with reduced reliability. Results were fitted with a linear func-
tion for illustration purposes.

with positive R? with reliability in HCP-YA and found an even stronger
correlation (r(7) = 0.71, p=0.032, 95% CI [0.09, 0.93]). Similar to our
main analysis, all variables with reliability lower than <0.6 displayed
very low accuracy (R? < 0.02). Conversely, only variables with excellent
reliability (the picture vocabulary task, total cognition, grip strength,
reading English and crystallised cognition) could achieve R*> 0.05.

Influence of phenotype reliability on prediction accuracy scales
with sample size

Finally, we sought to investigate how the interaction between relia-
bility and sample size impacts brain-behaviour prediction. Using 5000
participants from the UKB dataset, we repeated the same simulation
approach in geometrically spaced training set sizes ranging from
n=250 to 4450. We were only able to systematically increase random
noise in two example phenotypes—age and grip strength—as none of
the cognitive assessments exhibited reliability high enough to warrant
manipulating it (we illustrate one such example in Supplementary
Results Fig. 15).

Systematically increasing noise resulted in reduced accuracy for
all training set sizes and followed the same pattern of R? halving for
every 0.4 drop in reliability observed in our previous analysis (Fig. 3).
Importantly, a change of 0.2 in reliability had a larger impact on pre-
diction performance than a change in training set size (e.g., from
n=1054 to n=1704). For age prediction, even samples of 652
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Fig. 4 | Improvement in prediction accuracy scales with sample size in
simulated data. Impact of training set size on age prediction accuracy in empirical
and simulated data with varying levels of reliability. Solid lines represent the mean
accuracy across all 100 simulated datasets in each reliability band and shaded areas
represent 2 standard deviations in accuracies.

participants with excellent reliability (r=0.81) produced comparable
accuracy to the full sample (R%mean = 0.15, R%4 = 0.005) with moderate
reliability (r=0.49) that is common across behavioural assessments
(Rmean = 0.14, R%4=0.01). This effect was less pronounced for phe-
notypes displaying weaker association with functional connectivity,
where more reliable training sets required at least half the size of the
less reliable sample to achieve comparable accuracy (Supplementary
Results Fig. 15).

Increasing sample size always resulted in higher prediction
accuracy irrespective of reliability. However, the largest improve-
ments in accuracy were observed for highly reliable data, while data
with moderate reliability showed only minor gains (Fig. 4). This was
particularly pronounced for samples below 1000 participants. Next,
we investigated how prediction accuracy of empirical data with
varying levels of reliability increases as a function of training set size
(Fig. 5). Replicating results from simulated data with reduced
reliability in Fig. 4, phenotypes with excellent reliability
(ICCgrip strength = 0.81; ICC,ge ~1.0) displayed a steeper and larger
improvement in accuracy as sample size increased. Phenotypes with
good reliability (ICCassociative tearning = 0.62; ICCcognitive flexibility = 0.67;
ICCruuid intelligence = 0.64) showed only minor changes in accuracy with
proportionally smaller improvements (Supplementary Results
Table 1). These remained unchanged when the maximum training set
size was increased by an additional 2500 participants (Supplemen-
tary Results Fig. 16).

Discussion

Here we demonstrate the burden of low behavioural test-retest relia-
bility on out-of-sample prediction performance in brain-behaviour
associations. Our results suggest that, especially when associations
between brain features and behavioural assessments are weak to
moderate, levels of reliability that are common for behavioural phe-
notypes can substantially attenuate large portions of shared variance.
Importantly, this attenuation holds irrespective of feature definition,
prediction algorithm or dataset, suggesting that analytical choices
have little impact. Furthermore, we show that while a larger sample
size increases the accuracy of brain-behaviour predictions, highly
reliable data in smaller samples can produce comparable results to
large amounts of moderately reliable data and depending on the size
of the true relationship, can even outperform it. Following on from
these findings, we show that only highly reliable data can fully benefit
from increasing sample sizes from hundreds to thousands of
participants.
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Fig. 5 | Improvement in prediction accuracy scales with sample size in
empirical data. Impact of training set size on prediction accuracy of empirical
behaviours. Solid lines represent the mean accuracy across 100 subsamples and
shaded areas represent 2 standard deviations in accuracy. SDST symbol digit sub-
stitution test, TMT-B trail-making task part B.

Phenotypic reliability is important for robust results

The attenuation of a correlation between two variables by their relia-
bility was already described by Charles Spearman in 1910. Here we
aimed to demonstrate that machine learning approaches widely
used to identify brain-behaviour associations also suffer from low
phenotypic reliability and show its impact on out-of-sample prediction
accuracy. Generally, we found that reliability attenuated out-of-
sample prediction accuracy similarly to what has been described
for in-sample correlation™***° and classification®**°. Building on
arguments emphasising the importance of reliability in biomarker
research', we illustrate the amount of attenuation that can be expec-
ted by the reliability of routinely collected neuropsychological
assessments available in most large-scale neuroimaging datasets. Our
results suggest that moderate reliability (ICC =0.6-0.4) can produce
serious attenuations of prediction accuracy irrespective of the dataset,
rs-fMRI reliability and analytical choices. Specifically, for ICC=0.6, we
observed prediction accuracy on average half of that when the same
variable had ICC=0.9. Moreover, even good levels of reliability
(ICC=0.6-0.8) were found to substantially attenuate brain-behaviour
associations. Strong relationships (e.g. age) were equally susceptible to
strong attenuation but, unlike weaker ones, could still be predicted
with poor reliability. However, current estimates indicate that such
large effect sizes for brain—-behaviour associations are the exception
rather than the rule®>*. Overall, these results indicate that high test-
retest reliability of behavioural phenotypes is crucial to fairly evaluate
the potential of neuroimaging in predicting individual differences in
behaviour.

Supporting previous literature most behavioural
assessments in the datasets used here (HCP-YA, UKB and ABCD)
showed reliabilities within the good to the moderate range that were
found to be susceptible to large attenuations (median ICC=0.51;
Supplementary Results Fig. 17), despite desirable levels for clinical
applications®?'. As many large neuroimaging datasets utilise similar
measurement instruments (e.g. NIH Toolbox*’), low prediction
accuracies observed in many recent reports may be partly driven by
suboptimal reliability of prediction targets”**'", This, in turn, limits
further insights into interindividual differences in brain function and
the search for neuroimaging-based biomarkers. Importantly, our
results also suggest that the field can benefit substantially from
improving measurement practices and optimising behavioural relia-
bility to increase SNR for predictive modelling and increasing asso-
ciation effect sizes.

The final attenuation of brain-behaviour relationships will be
determined by the joint reliability of both neuroimaging features and
behavioural targets**°. The reliability of functional connectivity

18,28,32,34,48,49
,

depends on the network®, preprocessing steps* and scan duration,
with longer acquisition leading to greater reliability*>***°. The marked
difference in age prediction accuracy between HCP and UKB datasets
we observed here, is, therefore, likely related to differences in rsfMRI
acquisition (6 min in UKB compared to 26 min in HCP-A), in addition to
lower precision in reported age in the UKB (measured in years com-
pared to months in HCP). In other words, low phenotypic reliability
that produced serious attenuation in the HCP-A dataset is likely to
display even greater attenuation in datasets with less reliable fMRI
measurements. Therefore, the results shown here may represent an
optimistic scenario for the field, as 26 min of resting-state images
collected over two days is, especially in clinical settings, uncommon.
However, we also emphasise that the impact of low phenotypic relia-
bility generalised across datasets as well as when feature reliability was
directly manipulated. Therefore, even with exceptionally reliable fMRI
measurements, unreliable phenotypes are still likely to substantially
attenuate out-of-sample prediction accuracy, as consistent ranking
across individuals is impaired.

In addition to overall low prediction performance for data with
less than good reliabilities, we observed a large variance in prediction
accuracy in simulated data. Specifically, datasets with moderate and
poor reliability showed accuracies that could result in opposite con-
clusions. For example, at ICC = 0.45, the highest accuracies (R*~0.1)
were comparable to those reported for many behavioural
assessments®’, while the worst observed accuracy represented a failure
of prediction (i.e., R*<0). As in our simulations, measurement noise
was randomly distributed; these results suggest that even phenotypes
with moderate reliability may contain enough noise to produce results
that will not replicate. Conversely, the higher the reliability, the lower
the risk of the variance in results caused by random noise to reach
R?=0. Our findings, therefore, reinforce the necessity for authors to
follow best-practice guidelines, replicate their predictions and validate
their models in truly independent samples or datasets®.

Large samples are necessary but not sufficient

In a recent study, Marek and colleagues (2022) have suggested that
investigating brain-phenotype associations requires sample sizes of
n>2000, as sampling variability in small effects can result in imprecise
effect size estimates. While cognitive ability and total psychopathology
used by the authors as exemplary phenotypes have been reported to
have excellent reliability (ICC > 0.9; however, see Tiego & Fornito® for
a discussion), the remaining phenotypes that were assessed have more
modest reliabilities (ICC = 0.31-0.82)*****3¢3_ Given this large variation
in reliability, the reported sample size requirement is likely not a one-
size-fits-all recommendation®, as increasing the reliability of many
collected behavioural measurements will result in larger effect sizes,
effectively reducing the sample size requirement.

Here we demonstrate that depending on the true association
strength, highly reliable phenotypes can reach comparable prediction
accuracy using samples in the hundreds rather than thousands, as they
are less subject to marked attenuation by low reliability. These results
suggest that collecting more reliable data may be particularly impor-
tant for research questions (assuming cross-sectional design is
appropriate) where many thousands of participants are difficult to
acquire (e.g., specific conditions) and discuss ways to implement this
below. However, more importantly, we demonstrate that only reliable
phenotypes can fully benefit from observed improvements in predic-
tion accuracy as training set sizes increase from hundreds to thou-
sands of participants®*. Conversely, measurements with poor
reliability are likely suboptimal candidates for big data initiatives, as
collecting thousands of participants will only yield minor increases in
accuracy before saturating. Therefore, improving the measurement
reliability of appropriately selected phenotypes for associations with
neuroimaging features will likely boost predictive (and statistical)
power in large datasets. Finally, we note that our findings should not be
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taken to justify the use of small n studies under the guise of high
measurement quality. As long as true associations between beha-
vioural phenotypes and neuroimaging display small effect sizes, very
large samples will be necessary to estimate them. Thus, it is important
that on top of considering measurement reliability, researchers con-
tinue to follow guidelines for generalisable®® and reproducible pre-
dictive modelling®-%°",

Across a broad range of tested variables, empirical reliability
(estimated from the datasets) was rarely excellent (5 out of 36 tested in
HCP-YA, 0 out of 17 in UKB and O out of 25 in ABCD), replicating
previous observations®. Furthermore, empirical reliability was gen-
erally lower than that reported after test development***>°°72, Similar
differences in reliability between different datasets are not
uncommon®>** and may be due to differences in retest intervals.
However, assessments of behaviour in large datasets, in particular, may
be subject to other sources of measurement noise resulting from
specifics of big data collection, such as site differences, staff training,
relatively low number of trials designed to lower the burden on parti-
cipants or shortened versions of validated assessments, and participant
fatigue from lengthy acquisition protocols. At the same time, best
practices in assessing test-retest reliability during test development
are not always adhered to, likely producing further discrepancies
between studies”. We further note that the test-retest reliability of
many measures in large datasets is currently hard to assess, as outside
of the HCP-YA none of the other datasets assessed here (HCP-A, UKB
and ABCD) or many other large openly available datasets have dedi-
cated test-retest samples. The inability to assess phenotype reliability
in these datasets precludes the possibility of disentangling whether a
poor model performance in a given study is due to measurement error
or truly reflects a low effect size. If phenotype reliability is indeed
substantially lower in large datasets than that reported at test devel-
opment, then many available datasets may be of limited use for
individual-differences research; and additionally, further, increasing
sample sizes (e.g. to biobank levels) without considering psycho-
metrics will be of little benefit. We, therefore, urge that, moving for-
ward, any attempts at identifying biomarkers must involve careful
consideration and thorough assessment of the reliability of behavioural
as well as neuroimaging measurements (e.g., in re-test samples) before
data is collected at larger scales and evaluated for predictive power.

Improving phenotypic reliability

A wealth of previous literature has discussed ways of improving mea-
surement reliability. Prior to the acquisition, this can be achieved by
opting for a deeper phenotyping design, either in the laboratory by
introducing more rigorous testing strategies and collecting more trials
per participant (for an overview see ref. 74) or by means of ecological
momentary assessment’, taking measures to increase between-
subject variance’®, or acquiring multiple assessments for data
aggregation®®. In already acquired data, researchers should select
relevant measurements with the best psychometric properties. For

behavioural phenotypes, assuming that error variance and loading of
all items on a latent dimension are equal’’, data reduction techniques
such as principal component analysis or summary scores can increase
reliability and lead to larger effect sizes than individual items'*>¢%787°,
Supporting this, composite scores of the NIH toolbox tasks in the HCP
datasets were more reliable than individual assessments and reached
higher prediction accuracy. Similarly, averaging left and right-hand
grip strength in the UKB dataset compared to each hand separately
leads to improvement in both reliability and accuracy. Comparable
increases can also be achieved when grip strength is averaged across
testing occasions (Supplementary Results Fig. 18). If equal item loading
on a latent dimension cannot be assumed, reliability can be increased
using latent modelling frameworks that account for systematic and
unsystematic errors. However, more work is necessary to identify the
most cost-effective strategies for optimising the reliability of both
brain and behavioural measurements without sacrificing measurement
validity. To this end, future research should focus on ways to improve
the reliability of already acquired data and evaluate best practices to
preserve reliability when acquiring new data at large scales.

Although the high reliability of either measurement is necessary
for meaningful investigations of prediction accuracy, it is not suffi-
cient. For instance, highly reliable phenotypes that do not capture a
valid representation within the brain are not likely to improve effect
sizes. Moreover, many behavioural measurements are validated
against other established psychological scales or with specific popu-
lations in mind, rather than developed in light of their biological
relevance. As a result, they may not be well-suited for investigations of
brain behaviour associations, and thus, enhancing their reliability may
bring little improvement in effect size. Similarly, structural MRI metrics
that display better reliability than functional connectivity®®, are often
poorer predictors of many psychological constructs’ that may instead
rely on intrinsic fluctuations in neural activity®>. Therefore, while
optimising measurement reliability offers one possible avenue for
improving the investigation of individual differences, it will not guar-
antee larger effect sizes® or better prediction accuracy, especially if
the selection of appropriate phenotypes is neglected.

In conclusion, the recent availability of large-scale neuroimaging
datasets, combined with advances in machine learning, has enabled
the investigation of population-level brain-behaviour associations. In
this study, we demonstrate that common levels of reliability across
many behavioural phenotypes in such datasets can strongly attenuate
or even conceal actual associations. This, in turn, can lead to scienti-
fically questionable conclusions about the predictive potential of
neuroimaging and hinders clinical translation. Therefore, greater
emphasis needs to be placed on refining behavioural phenotyping in
large datasets on top of similar efforts directed at neuroimaging.
Together, more reliable neurobiological measurements and markers
of behaviour will be necessary to fully exploit the benefits of big data
initiatives in neuroscience, promote the identification of potential
biomarkers, and contribute to reproducible science.

Table 1| Overview of datasets and samples used in main analyses

Dataset Analysis Sample (Female)® Age in years Age at follow-up
HCP-A Prediction of simulated data and selected 647 (351) 60.2 (x0.14)
phenotypes
HCP-YA Prediction of all phenotypes 771 (358) 28.5 (+3.7)
Test-retest 46 (32) 30.2 (+3.4) 30.6 (+3.3)
UKB Prediction of simulated data and all phenotypes 5000 (2714) 63.6 (+7.3)
Test-retest 1890 (1012) 61.1(+7) 63.5 (+6.9)
ABCD Prediction of all phenotypes 2133 (2123) 10 (x0.6)
Test-retest 2102 (1026) 10 (+0.63) 11.9 (+0.64)

HCP-A Human Connectome Project Aging, HCP-YA Human Connectome Project dataset Young Adult, UKB UK Biobank.

Participant sex was self-reported.
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Methods

Ethical approval

The reanalysis of openly available data was approved by the ethics
committee of the Medical Faculty at Heinrich Heine University Diis-
seldorf (4039 and 2018-317-RetroDEuA). Each dataset used in this
study had obtained ethical approval by their respective ethics com-
mittees. Participants in all datasets gave informed written consent and
were compensated by the respective studies and collection sites.

Datasets

We utilised data from four large-scale datasets (Table 1). Noise simu-
lations were done using data from the Human Connectome Project
Aging dataset (HCP-A) due to its favourable ratio between imaging
data quality (see Supplementary Methods Table 2 for dataset com-
parison) and variance in phenotypic data with high reliability. The
Human Connectome Project dataset Young Adult (HCP-YA), UK Bio-
bank (UKB) and Adolescent Brain Cognitive Development (ABCD) were
used to investigate the association between reliability and prediction
accuracy as test-retest or follow-up behavioural data was available in all
datasets (and not in HCP-A). Finally, the UKB sample was used to
investigate the interaction between reliability and sample size, given
the large number of participants available.

Human Connectome Project Aging dataset. For our primary simu-
lation analysis, we used data from the Human Connectome Project
Aging dataset®*®, obtained from unrelated healthy adults. Only parti-
cipants with all four complete runs of resting-state fMRI (rs-fMRI) scans
and no excessive head movement (framewise displacement <0.25 mm,
which corresponded to 3 SD above the mean) were analysed, resulting
in a sample of 647 participants for age prediction (351 female,
ages=36-89) and -550 who had all phenotypic data of interest
available (see Supplementary Table 3 for exact n for each phenotype).

The HCP scanning protocol involved high-resolution Tlw MRI
images that were acquired on a 3 T Siemens Prisma with a 32-channel
head coil using a 3D multi-echo MPRAGE sequence (TR=2500 ms,
0.8 mm isotropic voxels). The rs-fMRI images were acquired using a 2D
multiband gradient-echo echo-planar imaging (TR=800ms, 2 mm
isotropic voxels). Four rs-fMRI sessions with 488 volumes each (6 min
and 41 s) were acquired on two consecutive days, with one anterior-to-
posterior and one posterior-to-anterior encoding direction acquired
on each day.

Human Connectome Young Adult dataset. To investigate the rela-
tionship between reliability and prediction accuracy we used data from
the Human Connectome Project Young Adult dataset®®, partly con-
sisting of related healthy participants. Only participants with all four
complete runs of rs-fMRI, no excessive head movement (framewise
displacement <0.3 mm, which corresponded to a displacement of 3 SD
above the mean) and all phenotypes of interest were included (n =713,
358 female, ages =22-35). In total, 36 behavioural phenotypes that
were available for all participants and did not display strong ceiling
effects were selected for prediction (see Supplementary Table 4 and
Fig. 19 for a full list of phenotypes and their distributions). Standar-
dised scores were used when available. Additionally, a test-retest
dataset for participants with all 36 assessments (n=46, 32 female,
ages =22-35) was used to estimate phenotypic reliability.

The HCP scanning protocol involved high-resolution Tlw MRI
images that were acquired on a 32-channel head coil on a 3 T Siemens
“Connectome Skyra” scanner using a 3D single-echo MPRAGE
sequence (TR=2400 ms, 0.7 mm isotropic voxels). The resting state
fMRI images were acquired using whole-brain multiband gradient-
echo echo-planar imaging (TR =720 ms, 2 mm isotropic voxels). Four
rs-fMRI sessions with 1200 volumes each (14 min and 24s) were
acquired on two consecutive days, with one left-to-right and one right-
to-left phase encoding direction acquired on each day.

UK Biobank. To investigate the association between prediction accu-
racy and reliability as well as how reliability interacts with sample size,
we randomly sampled 5000 (2714 female, ages = 48-82) participants
from all healthy participants in the UK Biobank sample®. Healthy
participants were defined as participants without lifetime prevalence
of cerebrovascular diseases, infectious diseases affecting the nervous
system, neuropsychiatric disorders or neurological diseases based on
ICD-10 diagnosis from hospital inpatient records and self-report (see
Supplementary Methods Table 5 for all excluded data fields). All par-
ticipants had complete rs-fMRI scans and displayed no excessive head
movement (framewise displacement <0.28 mm, which corresponded
to a displacement of 3 SD above the mean). Within this sample, we
selected 17 phenotypes that were available for all participants and did
not display strong ceiling effects (see Supplementary Table 6 and
Fig. 20 for a full list of phenotypes and their distributions). Of those,
age and grip strength were used for creating simulated data. Addi-
tionally, a sample of 1890 (1012 female, ages = 48-79) participants with
available follow-up data for all 17 phenotypes from the follow-up
imaging session was used to estimate phenotypic reliability. The mean
interval between the initial imaging session and the follow-up session
was 2 years and 6 months.

The UKB scanning protocol® included structural and resting state
fMRI images acquired at four imaging centres (Bristol, Cheadle Man-
chester, Newcastle and Reading) with harmonised Siemens 3 T Skyra
MRI scanners with a 32-channel head coil. Tlw MRI images were
acquired using a 3D MPRAGE sequence (TR=2000 ms, 1.0 mm iso-
tropic). One rs-fMRI session with 490 volumes each (6 min and 10 s)
was acquired using a multiband echo-planar imaging (TR =735 ms,
2.4 mm isotropic voxels).

Adolescent brain cognitive development. To investigate if our
association between phenotype reliability and prediction accuracy
generalises to an additional dataset with different preprocessing we
used data from the Adolescent Brain Cognitive Development study®’
baseline sample from the ABCD BIDS Community Collection®. Only
English-speaking participants without severe sensory, intellectual,
medical or neurological issues and all available behavioural pheno-
types were used (see Supplementary Table 7 for a full list). Further-
more, all participants had to have complete rs-fMRI data and pass the
ABCD quality control for their T1 and resting-state fMRI. This resulted
in a total of 4133 participants (2123 female, ages = 9-11). Additionally, a
sample of 2102 (1026 female, ages =9-11) participants with available
follow-up data for all phenotypes from the first follow-up session was
used to estimate phenotypic reliability. The mean interval between the
initial imaging session and the follow-up session was 1 year and
11 months.

The ABCD acquisition protocol” was harmonised across 21 sites
on Siemens Prisma, Phillips, and GE 750 3 T scanners. It included high-
resolution TIw MRI images with a 32-channel head coil using a 3D
multi-echo MPRAGE sequence (TR =2500 ms, 1.0 mm isotropic vox-
els). The rs-fMRI images were acquired using gradient-echo echo-pla-
nar imaging (TR =800 ms, 2.4 mm isotropic voxels) and included two
sessions totalling 20 min.

Simulation of different levels of reliability of selected
phenotypes

As increasing noise for the purposes of our analyses may only be
meaningful in highly reliable phenotypes, we selected prediction tar-
gets in the HCP-A dataset based on their published estimates of relia-
bility: age (ICC =1.0), grip strength (ICC = 0.93; Reuben et al.*), total
cognition composite (ICC=0.86-0.95; Akshoomoff et al.’”’; Heaton
et al.**) and crystallised cognition composite (ICC =0.9; Akshoomoff
et al.”%; Heaton et al.**). In the UKB dataset, we only manipulated noise
in age (ICC=1.0) and grip strength (ICC=0.93-0.96; Bohanon et al.
(2011); Hamilton et al. (1994)), as none of the cognitive assessments
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exhibited reliability values that were high enough to warrant lowering
it with noise (the highest reliability we found was for the trail-making B
task*® at r=0.78). For each of the selected prediction targets, we cre-
ated simulated datasets with varying amounts of noise. According to
classical measurement theory®?, any measurement reflects a mixture of
the measured entity and random (as well as systematic) measurement
noise. The reliability of a variable can thus be reduced by increasing the
proportion of error or noise variance while holding between-subject
variance constant, thereby reducing the signal-to-noise ratio. Here we
manipulated only the unsystematic measurement noise, defined as
random variability that produces a discrepancy between observed and
true values (or repeated observations). Increasing random noise is
ideal for investigating test-retest reliability as it only affects the
variability of measurements around the mean and thus manipulates
the ranking across individuals.

In order to induce increasing levels of noise in the target variable,
we created datasets that correlated with the originally observed
(empirical) targets at a pre-specified Pearson’s correlation. This method
was chosen to increase the interpretability of the resulting attenuation
of brain-behaviour associations by controlling the amount of noise.
The data generation procedure was as follows: First, a random vector
was sampled from a standard normal distribution with the same mean
and standard deviation as the original empirically acquired data (in the
HCP these were age-adjusted and normalised to mean =100 and SD =
15). Next, we calculated the residuals of a least squares regression of
the sampled vector (X) on the empirical data (). The resulting ortho-
gonal vector representing the portion of X that is independent of Y was
then again combined with the original empirical data Y through scaling
by the pre-specified correlation. This adjustment process manipulated
the relative contributions of Y and the residuals of X on Y in the
resulting simulated vector. The formula used for this process was:

Xyp=po(Y L)Y +/1-p2o(Y)Y L )

where Xy, is the new ‘simulated’ vector that correlates with the
empirical data Y at a predefined correlationp. Y L represents the
residuals of a least squares regression of a randomly sampled vector X
against Y. All simulations were created using custom code in R [version
4.0.4] and are provided online®,

The pre-specified correlations for simulated data based on the
HCP-A dataset were set to correlate with the original data at r=0.99,
0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55 and 0.5. Given the high
computational load for large samples, simulated UKB data were set to
correlate at r=0.9, 0.8, 0.7, 0.6 and 0.5 with the original data. For each
level of correlation, simulation was repeated 100 times, thus totalling
4400 simulated datasets for HCP-A (4 assessed phenotypes x 11 noise
levels x 100 repeats) and 1500 simulated datasets for UKB (3 assessed
phenotypes x 5 noise levels x 100 repeats). Simulated datasets were
scaled and offset to have approximately the same mean and standard
deviation as the original measurements to facilitate absolute agree-
ment (i.e. stability across repeated measurements) between the origi-
nal data and the simulated test-retest data in order to harmonise
test-retest correlations and ICC. As age did not follow a normal dis-
tribution, we first estimated its probability density from the original
data and then sampled simulated data from this distribution instead.

Phenotype preprocessing

As we used linear ridge regression for prediction, all phenotypes that
displayed a right-skewed distribution were transformed with a natural
log transform. As this procedure manipulated data within participants,
there was no data leakage across participants.

this included gradient distortion correction, image distortion correc-
tion, registration to participants’ Tlw image and to MNI standard space
followed by intensity normalisation of the acquired rs-fMRI images,
and independent component analysis (ICA) followed by an ICA-based
X-noiseifier (ICA-FIX) denoising®°¢ Additional denoising steps were
conducted by regressing mean time courses of white matter and cer-
ebrospinal fluid and the global signal, which has been shown to reduce
motion-related artefacts”. Next, data were linearly detrended and
bandpass filtered at 0.01-0.1 Hz.

The UKB data were preprocessed through a pipeline developed
and run on behalf of UK Biobank’® and included the following steps:
motion correction using MCFLIRT®’; grand-mean intensity normal-
isation of the entire 4D fMRI dataset by a single multiplicative factor;
highpass temporal filtering using Gaussian-weighted least-squares
straight line fitting with sigma =50 s; Echo Planar Imaging unwarping;
Gradient Distortion Correction unwarping; structured artefact
removal through ICA-FIX*?, No low-pass temporal or spatial
smoothing was applied. The preprocessed datasets (i.e. filter-
ed_func_data_clean.nii in the UK Biobank database) were normalised to
MNI space using FSL’s applywarp command.

The ABCD dataset was preprocessed ABCD-BIDS pipeline as part
of the ABCD-BIDS Community Collection (ABCC; Collection 3165),
which has been described in detail elsewhere®. The pipeline included
distortion correction and alignment using Advanced Normalisation
Tools (ANTS), FreeSurfer segmentation, and surface as well as volume
registration using FSL FLIRT rigid-body transformation. Processing was
done according to the DCAN BOLD Processing (DBP) pipeline, which
included de-trending and de-meaning of the rs-fMRI data, denoising
using a general linear model with regressors for tissue classes and
movement. The data were then bandpass filtered between 0.008 and
0.09Hz using a second-order Butterworth filter. DPB respiratory
motion filtering (18.582-25.726 breaths per minute), and censoring
(frames exceeding an FD threshold of 0.2 mm or failing to pass outlier
detection at +3 standard deviations were discarded) were then applied.

Functional connectivity

The denoised time courses from all datasets were parcellated using the
Schaefer atlas'® with 400 cortical regions of interest for all main ana-
lyses. The signal time courses were averaged across all voxels of each
parcel. Parcel-wise time series were used for calculating functional con-
nectivity between all parcels using Pearson correlation. For HCP datasets,
the correlation coefficients of individual sessions (4 per participant) were
transformed into Fisher-Z scores, and for each connection, an average
across sessions was calculated. To investigate the robustness of our
results to granularity and parcellation selection, functional connectivity
between denoised time courses of 200, 300 cortical regions from the
Schaefer atlas’® as well as 300 cortical, subcortical and cerebellar
regions of interest defined by Seitzman et al.'” was calculated. Regions
were modelled as 6-mm spheres and calculated from resting state data
from the HCP Aging dataset. Finally, to investigate the generalisation of
our results to another dataset with different preprocessing steps, the
ABCD dataset was parcellated using HCP’s 360 ROI atlas template'®*.

Prediction

We used the scikit-learn library [version 0.24.2'%*] to predict all target
variables from functional connectivity using custom code available
online”. Accuracy was measured using coefficient of determination
(R?), mean absolute error (MAE) and Pearson correlation between
predicted and observed target values. The R? represents the propor-
tion of variance (in the target variable) that has been explained by the
independent variables in the model and was calculated as:

fMRI preprocessing noge: an2

Both HCP datasets provided minimally preprocessed data. The pre- R? (»y)=1- M 2)
processing pipeline has been described in detail elsewhere®. Briefly, >oi=1 i = yi)
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where j; is the predicted value of the ith sample and y; is the corre-
sponding true value for total n samples. Y Represents the mean across
all y. In this formulation, the R? is not interchangeable with the corre-
lation coefficient squared. All predictions were performed using linear
ridge regression as it showed a favourable ratio of computation time to
accuracy in previous work'® and preliminary testing (see Supple-
mentary Fig. 21). Out-of-sample prediction accuracy was evaluated
using a nested cross-validation with 10 outer folds and 5 repeats.
Hyperparameter optimisation (inner training folds) of the a regular-
isation parameter for ridge regression was done using efficient leave-
one-out cross-validation'®. The model with the best a parameter was
then fitted on the training folds and tested on the outer test folds.
Within each training fold, neuroimaging features were standardised by
z-scoring across participants before models were trained in order to
ensure that individual features with large variance would not dominate
the objective function. Before prediction (of both original and
simulated data), participants with target values 3 SD from the sample
mean were removed from the complete sample to minimise the impact
of extreme values resulting from random sampling in simulated data.
As a preprocessing step prior to training, neuroimaging features were
z-scored within participants.

Control analyses for simulation results in HCP-A. To verify our
analyses were robust to analytical degrees of freedom, we repeated
our analyses of the HCP-A dataset using support vector regression, an
alternative node definition for functional connectivity features (using
ROIs from ref. 101) and feature-wise confound removal. For algorithm
comparison, we trained a support vector regression with a linear ker-
nel on neuroimaging features. Out-of-sample prediction accuracy was
evaluated using a non-nested cross-validation with 10 outer folds and 5
repeats. A heuristic was used to efficiently calculate the hyperpara-
meter C'%;

1

c= e — 3
S SANeT ©)

where G is the matrix multiplication of features and transposition of
features (here: functional connectivity).

To investigate whether confounding effects impacted our results,
standard confound variables (age and sex for the prediction of all
phenotypes) were removed from the connectivity features using linear
regression. Confound removal was performed within each training
fold and the confound models were subsequently applied to test data
to prevent data leakage'”.

Finally, we investigated the impact or feature reliability (here
functional connectivity) on our results. As the length of the resting
state time-course has been shown to influence the reliability of func-
tion connectivity’>***, we reduced the amount of resting state data
used for calculating it and repeated all predictions. In the main ana-
lyses of the HCP-A, all 4 resting sessions from both days were used
(22 min and 44 s). To reduce feature reliability, functional connectivity
was then calculated using both sessions from each day separately
(13 min and 22s) and lastly, to mirror the UKB acquisition protocol,
only the very first session acquired in the anterior-to-posterior direc-
tion on day one (6 min and 41s) was used for calculating functional
connectivity. All control analyses are presented in the supplemental
material.

Association between reliability and prediction accuracy. The rela-
tionship between target reliability and prediction accuracy (mea-
sured as R?) was investigated using the HCP-YA dataset. First, the test-
retest data of 46 participants was used to estimate measurement
reliability for 36 different behavioural phenotypes by calculating ICC
between the scores from the first and second visits. ICC was calcu-
lated using a two-way random effects model for absolute agreement,

often referred to as ICC [2,1]'%. Next, all selected measures were
predicted in a sample of 713 participants from the HCP-YA dataset
using linear ridge regression. As the HCP-YA dataset includes related
participants, cross-validation was done using a 5 times repeated
leave 30% of families out approach, instead of the 10-fold random
split used in other analyses. Family members were always kept within
the same fold in order to maintain independence between the folds.
Confounding effects of age and sex on features were removed using
linear regression trained on the training set and applied to test data
within the cross-validation. Finally, the resulting prediction accura-
cies (R? of the 36 different phenotypes were correlated with their
corresponding reliability (calculated from the test-retest data) and
tested for significance (using a two-tailed test). To validate our
findings, the above-described approach (with the exception of cross-
validation) was repeated using the UKB dataset. Reliability was esti-
mated for 17 different behavioural assessments using ICC2 between
measurements collected during the first and follow-up imaging visits
in 1893 participants. All phenotypes were predicted in a set of 5000
participants from the UKB using ridge regression in nested cross-
validation with 10 outer folds and 5 repeats used for our main ana-
lyses. Correlations between reliability and prediction accuracy were
not corrected for multiple comparisons.

Subsampling procedure and prediction in the UKB dataset.
To examine how the effects of reliability on prediction performance
interact with increasing sample size, we randomly sampled geome-
trically spaced samples (series with a constant ratio between suc-
cessive elements) from 5000 participants of the UK Biobank starting
from n=250 (250, 403, 652, 1054, 1704, 2753, 4450). By doing so, we
aimed to cover sample sizes ranging from those available in larger
neuroimaging studies to international consortia levels. To be able to
compare prediction accuracy between different sample sizes we
used a learning curve function from Sklearn. In this approach, we first
partitioned a test set of 10% of the full sample (i.e. n=500). From the
remaining data, geometrically spaced samples (250, 403, 652, 1054,
1704, 2753, 4450) were sampled without replacement. Each sub-
sample was then used to train a ridge regression model with hyper-
parameter optimisation using the same cross-validation set-up with
10 outer folds and 5 repeats used in previous analyses. This approach
made the comparison of accuracy between different sample sizes
possible as the test set is held constant for all training samples. The
entire procedure was repeated 100 times for all simulated and
empirical data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

This study utilised publicly available data from the UK Biobank
(https://www.ukbiobank.ac.uk/enable-your-research), the HCP Young
Adult (https://www.humanconnectome.org/study/hcp-young-adult),
HCP Aging (https://www.humanconnectome.org/study/hcp-lifespan-
aging/data-releases), and ABCD (https://nda.nih.gov/study.html?id=
2313). ABCD and HCP Aging study data are available under restricted
access (https://nda.nih.gov/abcd/request-access) to researchers with
an approved NDA Data Use Certification (DUC). Similarly, to access
data from the UK Biobank, researchers are required to comply with a
data use agreement and apply for the data resource (https://www.
ukbiobank.ac.uk/register-apply/).

Code availability

All scripts and computational resources utilised in this manuscript,
including exemplary data, can be accessed in a public repository®® and
found online at: https://doi.org/10.5281/zenod0.13901196.
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