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Summary 32 

There is a recognized link between risk factors for non-communicable diseases and brain 33 

health. However, the specific effects that they have on brain health are still poorly understood, 34 

preventing its implementation in clinical practice. For instance, the association between such 35 

risk factors and cortical thickness (CT) has been primarily explored using univariate/bivariate 36 

methods and global/lobar measures of CT and has yielded inconsistent results. In this work, we 37 

aim to study the relationship between risk factors for non-communicable diseases and CT. In 38 

addition, we adopt a systems-level perspective to understand such relationship, by integrating 39 

several brain features including brain structure and function as well as neurotransmitter 40 

systems. 41 

Here, we analyzed latent dimensions linking a broad set of risk factors for non-communicable 42 

diseases to parcel-wise CT across the whole cortex (including raw, proportional, and brain size-43 

corrected measures). We used a multivariate approach (regularized canonical correlation 44 

analysis (RCCA)) embedded in a machine learning framework that allows to capture inter-45 

individual variability and to assess the generalizability of the model. The brain patterns 46 

(captured in association with risk factors) were characterized from a multi-level perspective, 47 

by comparing them with patterns of brain structure, function, and neurotransmitter systems. 48 

Analyses were performed separately in women (n=3685, 46-81 years) and in age-matched men 49 

(n=3685, 46-81 years) to avoid sex-bias on the results. 50 

We found one significant latent dimension (women: rrange=0.25-0.30, p=0.005-0.005; men: 51 

rrange=0.31-0.34, p=0.005-0.005), capturing variability in cardiometabolic health, including 52 

physical activity, body morphology/composition, basal metabolic rate, and blood pressure. 53 

This cardiometabolic health dimension was linked to a CT axis of inter-individual variability 54 

from the insula and cingulate cortex to occipital and parietal areas. Interestingly, this brain 55 
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pattern was associated with the binding potentials of several neurotransmitter systems, 56 

including serotoninergic, dopaminergic, cholinergic, and GABAergic systems. Of note, this 57 

latent dimension was similar across sexes and across CT measures (raw, proportional, and 58 

brain-size corrected). 59 

We observed a robust, multi-level and multivariate link between cardiometabolic health, CT, 60 

and neurotransmitter systems. These findings support the urgency of further investigation into 61 

the interaction between brain health and physical health and contributes to the challenge to the 62 

classical conceptualization of neuropsychiatric and physical illnesses as categorical entities. 63 

Therefore, regular monitoring of cardiometabolic risk factors may reduce their adverse effects 64 

on brain health and prevent the development of brain diseases. 65 

Keywords: Brain structure, cortical thickness, cardiometabolic, risk factors, neurotransmitter 66 

systems 67 

  68 
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Introduction 69 

Non-communicable diseases, including cardiovascular, metabolic, mental, and neurological 70 

disorders, represent the predominant global public health challenge nowadays (1,2). Most non-71 

communicable diseases share a common set of risk factors, like tobacco smoking, unhealthy 72 

diet, physical inactivity (1,2), excessive alcohol consumption, hypertension (2), sleep problems 73 

(3), obesity (increased body mass index (BMI)) and air pollution (2,3). Since non-74 

communicable diseases include mental and neurological disorders, the same set of risk factors 75 

also affects brain health (2,4). 76 

One of the biomarkers for brain health is cortical thickness (CT). Several studies have 77 

contributed to our understanding of the link between CT and risk factors such as BMI (5–11), 78 

waist circumference (10,11), cigarette smoking (10), physical exercise (12), and diet (13). 79 

However, even though these studies have advanced our understanding of the link between risk 80 

factors and CT, they have some limitations.  81 

One limitation is that the reported findings have been inconsistent. For instance, associations 82 

between BMI and both, global or frontal CT, have been reported as negative (5–7,10,11), as 83 

positive (8–10), and as not significant (6,7). To improve this point, studies using robust 84 

approaches that evaluate the generalizability of results are needed. In this regard, machine 85 

learning approaches use cross-validation to test for the generalizability of the implemented 86 

models. For that, the available data is divided into splits, allowing to train the model in one 87 

split and test its performance in a different split. Second, several of these studies analyzed 88 

global or lobar measures of brain structure. This prevents the discovery of extended fine-89 

grained patterns of brain organization that show brain regions with different or even opposite 90 

associations with risk factors. To achieve this, region-wise or voxel-wise measures of brain 91 

features should be analyzed in association with risk factors. Third, since most of these studies 92 
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use univariate/bivariate approaches, they provide a partial view of this association (14) 93 

impeding the discovery of distributed brain networks that are associated to several risk factors 94 

simultaneously (15). Distributed brain networks and their interactions, as well as their 95 

interaction with several risk factors, can be analyzed with multivariate approaches. Multivariate 96 

approaches provide a broad and comprehensive view of the phenomena under study, by 97 

uncovering relations among variables. Consequently, multivariate approaches take full 98 

advantage of the rich phenotyping included in large-scale datasets such as the UK Biobank. In 99 

addition, univariate/bivariate approaches cannot account for collinearity of variables, which 100 

hinders the interpretation of findings, and which is very common in both, risk factors (16) and 101 

neuroimaging (17). 102 

Therefore, despite that there is an established link between risk factors for non-communicable 103 

diseases and brain health, there are still several important aspects of this association which are 104 

incompletely understood (15,18). The lack of understanding of the relationship between risk 105 

factors and brain health prevents their use as biomarkers in the clinical practice, and hence is a 106 

major research priority (15). Since structural brain changes may be long-lasting and lead to 107 

various neuropsychiatric diseases, it is critical to pinpoint modifiable risk factors that can 108 

reduce the risk of those conditions. Understanding how risk factors for non-communicable 109 

diseases are related to brain health from a comprehensive and broad perspective requires 110 

understanding how multiple risk factors simultaneously interact with brain features across the 111 

whole brain. Thus, the main question of this study is which risk factors for non-communicable 112 

diseases affect brain health and how is the interplay between several risk factors and the 113 

structure of several regions of the brain cortex. This would allow to early detect patients at risk 114 

of brain disorders, somatic/physical disorders, or their comorbidities, and potentially prevent 115 

such diseases. 116 
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Another important point to consider is the multi-level nature of the interplay between risk 117 

factors and brain health. For instance, risk factors for non-communicable diseases have been 118 

associated with several brain features, including brain structure (19,20), function (21), genetics, 119 

and neurotransmitter systems (22). This needed integration of different neurobiological 120 

features (23) can now be done quantitively with neuromaps (24), which provides access to a 121 

wide set of brain maps, including for instance genes transcription and positron emission 122 

tomography derived features. Linking different data features will allow to gain a systems-level 123 

understanding of the association between risk factors and brain health. 124 

Hence, to gain a comprehensive, generalizable, and multi-level understanding of the 125 

relationship between risk factors and brain health, it is needed to use robust machine learning 126 

approaches with generalizability testing, along with methods that integrate different data 127 

modalities (25,26). In this respect, canonical correlation analysis (CCA) is a multivariate, data-128 

driven approach that can be used to discover large-scale distributed brain networks (i.e., axes 129 

of brain organization) associated with several risk factors (27,28). Of note, a regularized 130 

version of CCA (RCCA) mitigates the effect of collinearity and yields more stable results than 131 

CCA (27), improving the interpretability of results. CCA and RCCA have been previously used 132 

to search for robust and generalizable multivariate associations between different data 133 

modalities, such as brain structure, brain function, hippocampal structure, behavior, 134 

environmental variables, and psychiatric features (14,25,29–32). Using these methods, 135 

numerous studies have shown that several healthy and illness-related phenotypes are linked to 136 

axes of brain structural organization (25,30,32). 137 

Here, we study the relationship between risk factors for non-communicable diseases and CT. 138 

In addition, we explore such association from a systems-level perspective, by integrating 139 

several neurobiological features of the brain (Fig. 1). For that, we first searched for latent 140 
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dimensions linking a wide range of risk factors for non-communicable diseases to region-wise 141 

CT across the whole brain cortex using RCCA embedded in a machine learning framework. In 142 

other words, we searched for those combinations of risk factors which are most relevant for 143 

CT interindividual variability (14). The CT features included raw, proportional, and corrected 144 

(brain-size corrected) measures. On a second step we aimed to characterize the captured brain 145 

patterns from a neurobiological perspective. For that, we compared the brain patterns captured 146 

in the latent dimensions with existing brain maps spanning brain structure, function, genetics, 147 

and neurotransmitter systems. We performed sex-specific analyses in this study because 148 

previous works have shown sex differences in the association between brain structure and risk 149 

factors (33,34), and also in order to avoid sex-bias in the results (35,36). The existence of a sex 150 

bias in human neuroscience is recognized, with the consequence that much of our knowledge 151 

in the field is based on men, and do not or might not generalize to women (37). 152 

Methods 153 

Participants 154 

We used data from UKB (application 41655) (38,39). Inclusion criteria for this study were 155 

having no self-reported illnesses (Data-Field ID 20002-2.*) and having complete data in all 156 

variables utilized in this study (excluding responses like “Do not know” or “Prefer not to 157 

answer”). We created two gender/sex specific subsamples matching subject-by-subject by age: 158 

a subsample of women (n=3685, age: range 46-81 years, mean 62.3, standard deviation 7.6) 159 

and a subsample of men (n=3685; age: range 46-81 years, mean 62.3, standard deviation 7.6). 160 

The combined subsample was also analyzed (merging women and men, n=7370) in order to 161 

assess if results were stable when improving the samples-per-features ratio. 162 

Risk factors data 163 
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Variables of risk factors for non-communicable diseases corresponded to 1622 columns in the 164 

dataset. After removing duplicated, incomplete, or skewed variables, 68 variables remained, 165 

spanning categories of general health, body size measures, diet, physical activity, residential 166 

air pollution, sleep health, alcohol consumption, and smoking (Table S1). Note that UKB has 167 

two similar categories (Medication and Medications) and variables from both are used here 168 

(see Table S1). As done previously, we computed waist-to-hip ratio dividing waist 169 

circumference by hip circumference (10). The intercorrelation among risk factors was analyzed 170 

with Pearson’s correlation. 171 

Neuroimaging data 172 

Neuroimaging data for the sample used in this study were collected by UKB in four sites using 173 

identical protocols and 3T Siemens Skyra scanners with standard Siemens 32-channel receive 174 

head coils (40). T1-weighted structural imaging (3D-MPRAGE, sagittal) was acquired with the 175 

following parameters (38,40): voxel resolution: 1x1x1 mm, FoV: 208x256x256 matrix, TI/TR 176 

= 880/2000 ms, in-plane acceleration iPAT=2. T1 images were processed by UKB using a 177 

custom pipeline based on FSL (40), including gradient distortion correction, cutting down the 178 

field of view, registration (linear and then non-linear) to the MNI152 standard-space T1 179 

template, brain extraction, defacing, and brain segmentation (40). CT was estimated using 180 

FreeSurfer a2009s. 181 

We used mean raw CT of 148 parcels on the white surface (Destrieux atlas, a2009s) (41). In 182 

addition, we used proportional estimations of CT (computed subject-wise, dividing the mean 183 

raw CT of each parcel by the mean raw CT across all parcels) and CT corrected for brain size 184 

(regressing out mean CT in a cross-validation consistent manner) (42). These different CT 185 

measures represent different biological properties and can show different patterns of 186 

associations with risk factors. 187 
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Regularized canonical correlation analysis 188 

Canonical Correlation Analysis (CCA) is a multivariate technique that can discover latent 189 

dimensions linking interindividual variability in ! and " (27,32,43). Here, ! included CT for 190 

each parcel, while " included risk factors. CCA searches linear combinations of variables in ! 191 

(brain weights #) and of variables in " (risk factor weights $), which maximize the canonical 192 

correlation between the brain scores and risk factor scores (27,32). The scores correspond to 193 

the projection of ! and " onto their respective weights (!# and "$).  194 

One limitation of CCA is that it can overfit the data or yield unstable results, especially in high-195 

dimensional datasets (44). A regularized version of CCA (RCCA) reduces the overfitting of 196 

the model by adding L2-norm constraints to the weights (27,32,45,46). 197 

To search for multivariate associations between risk factors and brain structure, we ran nine 198 

RCCA models: three in the subsample of women, three in the age-matched subsample of men, 199 

and three in the combined subsample. Within each subsample, each RCCA model linked the 200 

same set of risk factors with either a) raw CT, b) proportional CT, or c) brain size-corrected 201 

CT. Age and site were regressed out avoiding data leakage in the machine learning framework 202 

(regression parameters were estimated in the training set and applied to the training, test, and 203 

holdout sets) (47). In the combined subsample, sex was also regressed out. Confounding 204 

variables were included in the " matrix to check if their variance was properly removed. 205 

To visualize and interpret the latent dimensions, loadings were computed (27). Brain (or CT) 206 

loadings correspond to the correlation of the original brain variables (!) with brain scores (!#). 207 

Similarly, risk factor loadings correspond to the correlation between the risk factor original 208 

variables (") with the respective scores ("$). Loadings indicate which variables are more 209 
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strongly associated with the latent dimension. To interpret the latent dimensions, only stable 210 

loadings were considered (loadings whose error bar does not cross zero). 211 

Machine learning framework 212 

We utilized a machine learning framework that uses multiple holdouts of the data (32,48). This 213 

framework implements two consecutive splits: the outer split divides the whole data into 214 

optimization and hold-out sets, and is used for statistical evaluation, and the inner split divides 215 

the optimization set into training and test sets and is used for model selection. In this study, we 216 

used 5 inner splits and 5 outer splits. Model selection was performed based on the highest test 217 

canonical correlation and the highest stability (similarity of weights estimated using Pearson’s 218 

correlation across the 5 inner splits). 219 

Statistical evaluation of the latent dimensions 220 

Statistical significance of the latent dimensions was tested with permutation tests. In each of 221 

the 1000 iterations, the rows of the " matrix were shuffled in the optimization and hold-out 222 

sets. The RCCA model (hyperparameters) that was previously selected with the original data 223 

was now fitted on the permuted optimization set, and weights were obtained. Then, the 224 

permuted hold-out set was projected onto these weights. A canonical correlation under the null 225 

model was hence obtained, and a p-value was computed. The permutation test was repeated for 226 

each one of the outer splits, hence yielding 5 p-values which were corrected by multiple 227 

comparisons (Bonferroni method over 5 comparisons). The statistical significance of the latent 228 

dimensions was evaluated using the omnibus hypothesis (48). Here, the null hypothesis states 229 

that there is no effect in any of the splits. Hence, if at least one split yields a p-value below 230 

0.05, the null hypothesis is rejected, and the latent dimension is considered significant. When 231 
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a significant latent dimension was found, its variance was removed from the data using 232 

deflation (32), and an additional latent dimension was sought. 233 

Stability of the latent dimensions across sexes and cortical thickness measures 234 

The latent dimensions yielded by the 9 models (for either men, women, or the combined 235 

subsamples; and in each case when using either raw, proportional, or corrected CT), were 236 

compared based on their average risk factor loadings and average brain loadings (average 237 

across the outer 5 splits). The risk factor loadings were compared with Pearson’s correlation 238 

across models. The brain loadings were compared using spin test to account for spatial 239 

dependencies of brain data (49) using neuromaps (24) software. The p-values were corrected 240 

by multiple comparisons using Bonferroni method over 210 comparisons (number of 241 

comparisons when comparing all the 21 significant latent dimensions). 242 

Neurobiological characterization of the pattern of cortical thickness loadings 243 

The brain maps provided in neuromaps (24) (Table S3) (excluding the map ‘hill2010’ which 244 

is provided only in one hemisphere) were compared to the sex-specific maps of CT loadings 245 

using spin test (49). This was performed to assess if the latent dimensions captured a CT pattern 246 

significantly associated with other patterns of brain biomarkers. Multiple comparisons were 247 

corrected using the Bonferroni method over 468 comparisons for the first latent dimensions (6 248 

significant CT maps and 78 brain maps) and 390 comparisons for the second latent dimensions 249 

(5 significant CT maps and 78 brain maps). 250 

Ethics 251 

Analyses on the data have been approved by the University Hospital Düsseldorf ethics 252 

committee votes 2018-317-RetroDEuA, 2018-317_1-RetroDEuA, and 2018-317_2. 253 
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Results 254 

Risk factors 255 

The distribution of risk factors is shown in figures S1-S2. The intercorrelation among risk 256 

factors was analyzed with Pearson’s correlation. In the correlation matrices for risk factors, 257 

two groups of highly intercorrelated variables were evident (Figures S3-S4). One group shows 258 

intercorrelation among body composition measures, including BMI, body fat percentage, body 259 

fat mass, body fat-free mass, body water mass, basal metabolic rate, impedance of whole body, 260 

waist circumference, hip circumference, and waist-to-hip ratio. Another group of highly 261 

intercorrelated variables was characterized by air pollution. 262 

Latent dimensions linking risk factors to raw cortical thickness in the sex-specific subsamples 263 

We searched for latent dimensions linking risk factors to raw CT using RCCA and a machine 264 

learning framework in the sex-specific subsamples. The first latent dimensions linking risk 265 

factors to raw CT were significant in women (rrange=0.25-0.30, p=0.005-0.005) and men 266 

(rrange=0.31-0.34, p=0.005-0.005) (Figures 2-3, S5a-b and S6-S7 and Tables S4-S5). Of note, 267 

these first latent dimensions for raw CT showed significant cross-sex correlations at the risk 268 

factor loadings (r=0.97, p<0.001) and brain loadings (r=0.87, p<0.001) (Figure S15a-b). The 269 

second and third captured latent dimensions are shown in supplementary results 2.1-2.2. 270 

Interestingly, the same first latent dimensions were captured when analyzing proportional and 271 

corrected CT (supplementary results 2.3-2.5) and in the combined subsample (Figure S15, 272 

supplementary results 2.6).  273 

In both sexes the risk factor loadings of the first latent dimensions showed a positive pole 274 

associated with higher physical activity, higher body impedance, and better self-perceived 275 

health, and a negative pole associated to higher body size measures (BMI, hip and waist 276 
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circumference, and waist-to-hip ratio), higher body fat (mass and percentage), higher basal 277 

metabolic rate, higher body water mass, higher body fat-free mass, higher blood pressure 278 

(systolic and diastolic), higher pulse rate, and higher sedentarism (higher time spent watching 279 

television). Interestingly, the set of risk factors characterizing this first latent dimension 280 

includes some but not all the variables captured in the first group in the inter-correlation matrix. 281 

Associations between the latent dimensions and demographics are shown in supplementary 282 

results 2.7. 283 

In both sexes the CT loadings of the first latent dimensions were higher in the insula, cingulate 284 

cortex, temporal lobes, inferior parietal areas, orbitofrontal areas, and primary motor cortex, 285 

and lower in the primary somatosensory cortex, medial and superior frontal areas, superior 286 

parietal areas, and occipital areas. This axis ranged from the insula and cingulate cortex to the 287 

occipital lobes and superior parietal areas. 288 

Conceptually, this latent dimension links cardiometabolic health to higher CT in the insula, 289 

cingulate cortex, temporal lobe, inferior parietal, orbitofrontal, and primary motor cortex, and 290 

lower CT in the primary somatosensory cortex, medial and superior frontal areas, superior 291 

parietal areas, and occipital areas. 292 

Neurobiological characterization of the pattern of cortical thickness loadings 293 

To characterize the latent dimensions from a neurobiological perspective, we compared the CT 294 

loadings with brain maps spanning brain function, structure, and neurotransmitter systems. For 295 

the first latent dimensions in the sex-specific subsamples, several associations between the CT 296 

patterns and brain maps were consistent across CT estimates and sexes (Fig. 4). Namely, the 297 

maps of CT loadings of both sexes for proportional, raw, and corrected CT, were positively 298 

associated with the cortical distribution of serotonin receptor 5-HT1a (50,51), acetylcholine 299 

transporter VAChT (23,52,53), cortical thickness in Human Connectome Project (54), and fifth 300 
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gradient of resting-state functional connectivity (55), and negatively associated with oxygen 301 

metabolism (56) (Table 1). Also, all the CT loadings maps for men, and the maps for raw and 302 

corrected CT in women were positively associated with the cortical distribution of dopamine 303 

receptor D2 (23,57–59) and dopamine transporter DAT (60), and negatively associated with 304 

GABA receptor GABAa (61) and glucose metabolism (56). Additional associations are shown 305 

in supplementary results 2.8. 306 

Discussion 307 

We report a latent dimension characterizing the interplay between a wide range of risk factors 308 

for non-communicable diseases with region-wise CT across the whole cortex. This latent 309 

dimension highlights the relevance of cardiometabolic health for inter-individual variability of 310 

brain structure in a healthy sample. Importantly, this latent dimension was stable across sexes 311 

and across CT measures (raw, proportional, and brain-size corrected CT). Accordingly, this 312 

latent dimension cannot be explained by a confounding effect of head size/morphology that 313 

could be conveyed in CT estimates. Moreover, our results underline the multi-level nature of 314 

the association between risk factors and brain structure, linking the brain pattern of the latent 315 

dimension with the spatial distribution of several neurotransmitter systems. 316 

Our study has some limitations. The latent dimensions found are restricted by the variables 317 

included in the RCCA. Similarly, the neurobiological characterization of the latent dimensions 318 

is limited by the brain maps available. The age range of the sample prevents characterization 319 

of the latent dimensions on children, adolescents, and young adults. The sample comprised 320 

mainly participants of White British ancestry, so it is not possible to generalize these results to 321 

other races/ethnicities. 322 

Our results showed an axis of variability in cardiometabolic health which is related to an axis 323 

of variability in CT extending from the insula and cingulate cortex to the occipital lobes and 324 
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superior parietal regions. Overall, this latent dimension indicates that regions engaged in 325 

processing internal information such as emotional and motivational systems (including for 326 

instance insula, orbitofrontal cortex, and anterior cingulate cortex) show positive loadings 327 

while more dorsal regions typically engaged in dorsal attention and executive systems (such as 328 

the lateral superior prefrontal and parietal cortex) show negative loadings. Conceptually, this 329 

latent dimension indicates that better cardiometabolic health is associated with increased CT 330 

in emotional and motivational systems and reduced CT in dorsal attention and executive 331 

systems.  332 

Our results are in line with recent reports pointing to the important role of cardiometabolic 333 

health for brain health. For instance, several studies have linked cardiometabolic factors to 334 

brain structure, such as reduced total brain volumes (34,62,63), reduced grey matter volumes 335 

(20,34,63), or to structural markers of brain aging (64). Interestingly, our findings are in 336 

contrast with works that have reported only reductions, but not increases, in brain structural 337 

measures in association with risk factors or cardiometabolic health. Differences in the health 338 

status of the samples might explain these differential effects. Apart from associations with brain 339 

structure, cardiometabolic health has also been associated with brain function, such as to 340 

cognition (34), dementia (62), and other neuropsychiatric disorders and symptoms 341 

(15,18,34,65,66). Our results are in line with these findings by showing associations between 342 

cardiometabolic health and brain structures typically associated with emotion, motivation, 343 

attention, or executive functions. In a similar vein, the latent dimension reported here reinforces 344 

the relevance of the adipose tissue-brain axis, which links the adipose tissue to brain function 345 

(67,68) and structure, and particularly to neurodegeneration (67). Hence, cardiometabolic 346 

factors are emerging as promising biomarkers for the interaction between brain and physical 347 

health and should be monitored in neurological and psychiatric clinical practice. 348 
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Overall, our results shed light on the architecture that supports the interaction between physical 349 

health and brain health. Accordingly, our findings contribute to the recognized urgency to 350 

characterize brain-body interactions for its implementation in clinical practice (15,18,66). For 351 

instance, it is not common to monitor physical illnesses in patients with neuropsychiatric 352 

disorders. However, recently it has been pointed out that neuropsychiatric disorders are 353 

associated with symptoms of physical illnesses and that actually poor physical health is a more 354 

pronounced effect than brain phenotypes in these patients (18).  Given that the interplay 355 

between brain and body health is not well understood, the clinical practice nowadays has 356 

limited tools to exploit this interaction not only for a comprehensive monitoring of health, but 357 

also for its use as biomarkers. Hence, research characterizing brain and body interactions is a 358 

major priority for global health because it will guide the discovery of new integrated disease 359 

manifestations and guide the development of new therapies and clinical interventions (15,18). 360 

Of note, the effects of cardiometabolic health on brain structure have been also found in 361 

adolescents (34,69) and children (34,70), indicating the importance of understanding these 362 

factors throughout the lifespan. 363 

Several studies have pointed out that a causal factor or mediator in the association between risk 364 

factors for non-communicable diseases and brain health might be inflammation (34,69,71–73), 365 

and in particular low-grade systemic inflammation (15,34,72–75). Risk factors for non-366 

communicable diseases are also risk factors for low-grade systemic chronic inflammation 367 

(3,73,75). In turn, low-grade systemic chronic inflammation has been associated with non-368 

communicable diseases (3,74), including neuropsychiatric illnesses (15,34,73–77). For 369 

instance, chronic inflammation in the adipose tissue has been associated with the development 370 

of neurodegenerative disorders such as Alzheimer’s disease (67,73). In addition, behavioral 371 

phenotypes related to the risk factors pattern found in this study, such as impaired regulation 372 

of energy homeostasis and feeding behavior, have also been associated with inflammation 373 
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caused by adipose tissue dysfunction and diet (75). Moreover, inflammatory factors have been 374 

reported to mediate the association between BMI and other cardiometabolic factors with 375 

cortical structure (71,72). In fact, inflammation has been proposed as the cause of comorbidities 376 

between non-communicable diseases (66,76), such as depression and cardiovascular or 377 

neurodegenerative illnesses (76).  378 

The precise inflammatory mechanisms underlying the association between cardiometabolic 379 

risk factors and brain health is still unclear, but studies suggest the involvement of elevated 380 

blood levels of cytokines (34,66) (such as interleukin-6, interleukin-1, interleukin-1b or tumor 381 

necrosis factor-alpha (73)), lymphocyte counts (66), C-reactive protein (72), and nuclear factor 382 

kappa B (73), as well as microglial activation (34,69,73). These immune factors influence 383 

synaptic plasticity (34,69), cell metabolism, cell myelination, neuronal excitotoxicity (69), 384 

neuronal apoptosis, oxidative stress, metabolic pathways (for instance those related to insulin 385 

and leptin), disrupt cerebrovascular function (34), and impair the brain-blood barrier (34,73). 386 

In fact, interleukine-6 has been associated with reduced CT (73). Another potential mechanism 387 

underlying the link between risk factors and brain structure is insulin. Insulin modulates 388 

synaptic plasticity and the secretion of proinflammatory cytokines and is related to the 389 

formation of neurofibrillary tangles and aggregation of b-amyloid, both characteristics of 390 

Alzheimer’s disease (73). Similarly, glucose and atherosclerosis are associated to the regulation 391 

of b-amyloid aggregation (73). However, it is worth noting that the direction of the causality 392 

(for instance, if obesity causes low-grade systemic inflammation or vice versa) is still not well 393 

understood (34). 394 

Interestingly, the brain pattern captured by the latent dimension was not only related to 395 

cardiometabolic health, but also to the spatial distribution of several neurotransmitter systems. 396 

Specifically, the brain pattern was associated with the spatial distribution of the binding 397 
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potentials to serotonin receptor 5-HT1a (50,51), dopamine receptor D2 (23,57–59), dopamine 398 

transporter DAT (60), acetylcholine transporter VAChT (23,52,53), and GABA receptor 399 

GABAa (61). This indicates that the latent dimension captured a brain axis in which cortical 400 

regions that covaried the most with the pattern of risk factors (either positively or negatively) 401 

were those that showed either high or low binding potentials with these neurotransmitter 402 

receptors and transporters. This suggests that the clinically relevant interaction between brain 403 

and body health that has been called to attention recently (15,18) might be mediated by 404 

processes associated with neurotransmitter systems. Hence, our results join the body of 405 

evidence showing an overlap between physical illnesses and neuropsychiatric disorders, and 406 

the need of a holistic approach in clinical practice integrating body and brain factors instead of 407 

considering them as categorical entities (18). 408 

Interestingly, these neurotransmitters associated to the latent dimension have in turn been 409 

linked to phenotypes related to the risk factors captured in the latent dimension. For instance, 410 

the serotoninergic system is associated with energy balance and feeding behavior (78,79), 411 

obesity (78), and physical activity (80). Specifically, the 5-HT1a receptor has been associated 412 

with food intake (79), anorexia nervosa and bulimia nervosa (81). The dopaminergic system 413 

has been associated with physical activity (80), and specifically, the receptor D2 has been 414 

associated with disorders related to eating behavior, such as anorexia nervosa, bulimia nervosa, 415 

and obesity (81). Overall, the evidence indicates that these neurotransmitter systems are 416 

associated with imbalances in energy homeostasis and feeding behavior, which are phenotypes 417 

related to the pattern of risk factors captured in our latent dimension. 418 

Interestingly, evidence of the mechanistic cause linking neurotransmitter systems with both, 419 

risk factors for non-communicable diseases and brain structure, also points to inflammation. 420 

Several studies have shown a cross-talk between the immune system and several 421 
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neurotransmitter systems, such as serotoninergic, noradrenergic, dopaminergic (77,82), 422 

GABAergic (74), and cholinergic systems. For instance, certain neurotransmitter receptors, 423 

including 5-HT1a, D1 and D2, have immunologic functions (74,82), and can lead to the 424 

disruption of homeostasis (74) and to inflammation. Accordingly, immune cells express 425 

neurotransmitter receptors (82). In turn, immunological factors can regulate normal cellular 426 

functions, including neurotransmission and synaptic plasticity (74). In sum, the cross-talk 427 

between immunologic factors and neurotransmitter systems is bidirectional (74,82) and is 428 

relevant for several non-communicable diseases (82). Moreover, since these neurotransmitter 429 

systems are implicated in mental disorders and in somatic non-communicable diseases (74,76), 430 

the mechanisms underlying the comorbidity between mental and somatic disorders might be 431 

associated with alterations in neurotransmitter systems (66). 432 

Conclusion 433 

Our study shows a latent dimension linking cardiometabolic health to increases of CT in 434 

emotional and motivational systems and to reductions of CT in dorsal attention and executive 435 

systems. In turn, this brain pattern is associated with the cortical distribution of several 436 

neurotransmitter systems. Hence, our study shows that cardiometabolic health, brain structure, 437 

and neurotransmitter systems are interrelated, highlighting the multi-level nature of health. Our 438 

results underline the role of cardiometabolic health in brain health. Also, our work contributes 439 

to questioning the classic consideration of neuropsychiatric and somatic illnesses as separate 440 

categories (74) and supports the view of a needed integration of brain and physical health in 441 

clinical practice (15,18).  442 
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Figure legends 725 

 726 

Figure 1. Overview of the analyses. Top panel: Latent dimensions were search using 727 

RCCA, linking cortical thickness measures (parcel-wise across the whole brain cortex) with a 728 

wide set of risk factors for non-communicable diseases. Below panel: In order to interpret the 729 

latent dimension, the brain loadings were compared with several brain features. 730 
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 731 

Figure 2. Loadings of the first latent dimension from regularized canonical correlation 732 

analysis between risk factors for non-communicable diseases and raw cortical thickness 733 

in women. a) Risk factors loadings. b) brain loadings. Shown loadings represent the average 734 

over the five outer splits. Error bars depict one standard deviation. The shadowed zone marks 735 

loadings between −0.2 and 0.2.  736 
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 737 

Figure 3. Loadings of the first latent dimension from regularized canonical correlation 738 

analysis between risk factors for non-communicable diseases and raw cortical thickness 739 

in men. a) Risk factors loadings. b) brain loadings. Shown loadings represent the average over 740 

the five outer splits. Error bars depict one standard deviation. The shadowed zone marks 741 

loadings between −0.2 and 0.2. 742 
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 743 

Figure 4. Association of cortical thickness loadings with neuromaps for the first latent 744 

dimension. The association between the brain pattern of the first latent dimension and 745 

neuromaps was assessed with spin test. Only data for neuromaps that yielded a significant 746 

association with at least one CT loadings map of the first latent dimension are shown. CT: 747 

cortical thickness; Pro: proportional; Cor: corrected 748 

 749 
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Table 1. Correlation of CT loadings of the first latent dimension with brain maps. 
 

Brain maps 

Women Men 

Raw CT Proportional CT Corrected CT Raw CT Proportional CT Corrected CT 

annotation Category Subcategory r p-value r p-value r p-value r p-value r p-value r p-value 

margulies2016_fcgradient05_fsLR_32k Brain function FC Grad5 0.5631 <0.001 0.5948 <0.001 0.5420 <0.001 0.5797 <0.001 0.5420 <0.001 0.5906 <0.001 

hcps1200_thickness_fsLR_32k Brain structure CT 0.7120 <0.001 0.7361 <0.001 0.6554 <0.001 0.7291 <0.001 0.6556 <0.001 0.7369 <0.001 

hcps1200_myelinmap_fsLR_32k Brain structure T1w/T2w -0.4068 >0.999 -0.4590 <0.001 -0.3329 >0.999 -0.3719 >0.999 -0.3375 >0.999 -0.3868 >0.999 

abagen_genepc1_fsaverage_10k Genetics PC1 Allen -0.6963 <0.001 -0.6986 <0.001 -0.6359 0.4675 -0.6572 <0.001 -0.6403 0.4675 -0.6694 <0.001 

raichle_cmruglu_fsLR_164k Metabolism Glucose -0.6119 <0.001 -0.4808 >0.999 -0.6360 <0.001 -0.5894 <0.001 -0.6307 <0.001 -0.5925 <0.001 

raichle_cmr02_fsLR_164k Metabolism Oxygen -0.6230 <0.001 -0.5696 <0.001 -0.5985 <0.001 -0.5848 <0.001 -0.5967 <0.001 -0.5868 <0.001 

beliveau2017_cumi101_MNI152_1mm Neurotransmitters 5-HT1a 0.6843 <0.001 0.6546 <0.001 0.6733 <0.001 0.6818 <0.001 0.6733 <0.001 0.6885 <0.001 

beliveau2017_cumi101_fsaverage_164k Neurotransmitters 5-HT1a 0.7249 <0.001 0.7033 <0.001 0.6983 <0.001 0.7068 <0.001 0.6995 <0.001 0.7188 <0.001 

savli2012_way100635_MNI152_3mm Neurotransmitters 5-HT1a 0.6180 <0.001 0.5934 <0.001 0.5854 <0.001 0.5890 <0.001 0.5863 <0.001 0.5973 <0.001 

beliveau2017_sb207145_MNI152_1mm Neurotransmitters 5-HT4 0.4501 >0.999 0.4878 <0.001 0.4355 >0.999 0.5083 <0.001 0.4370 >0.999 0.5117 <0.001 

savli2012_dasb_MNI152_3mm Neurotransmitters 5-HTT 0.5155 >0.999 0.3160 >0.999 0.5625 <0.001 0.4385 >0.999 0.5634 <0.001 0.4577 >0.999 

jaworska2020_fallypride_MNI152_1mm Neurotransmitters D2 0.5494 <0.001 0.4991 >0.999 0.5451 <0.001 0.5493 0.9351 0.5431 <0.001 0.5613 <0.001 

sandiego2015_flb457_MNI152_1mm Neurotransmitters D2 0.5987 <0.001 0.5536 >0.999 0.5982 <0.001 0.5959 <0.001 0.5964 <0.001 0.6019 <0.001 

smith2017_flb457_MNI152_1mm Neurotransmitters D2 0.5262 <0.001 0.4938 >0.999 0.5110 0.4675 0.5168 0.9351 0.5095 0.4675 0.5256 0.9351 



dukart2018_fpcit_MNI152_3mm Neurotransmitters DAT 0.5593 <0.001 0.3989 >0.999 0.5785 <0.001 0.5123 <0.001 0.5870 <0.001 0.5406 <0.001 

norgaard2021_flumazenil_MNI152_1mm Neurotransmitters GABAa -0.4466 <0.001 -0.3979 >0.999 -0.4326 <0.001 -0.4023 <0.001 -0.4314 <0.001 -0.4023 <0.001 

kantonen2020_carfentanil_MNI152_3mm Neurotransmitters MOR 0.5254 >0.999 0.6327 <0.001 0.4366 >0.999 0.5148 >0.999 0.4413 >0.999 0.5223 >0.999 

turtonen2020_carfentanil_MNI152_1mm Neurotransmitters MOR 0.4928 >0.999 0.6320 <0.001 0.4008 >0.999 0.4974 >0.999 0.4059 >0.999 0.5034 >0.999 

aghourian2017_feobv_MNI152_1mm Neurotransmitters VAChT 0.5359 <0.001 0.5419 <0.001 0.5301 <0.001 0.5841 <0.001 0.5285 <0.001 0.5532 0.9351 

bedard2019_feobv_MNI152_1mm Neurotransmitters VAChT 0.6376 <0.001 0.5811 <0.001 0.6284 <0.001 0.6144 <0.001 0.6309 <0.001 0.6208 <0.001 

tuominen_feobv_MNI152_2mm Neurotransmitters VAChT 0.5538 <0.001 0.5087 <0.001 0.5621 <0.001 0.5627 <0.001 0.5633 <0.001 0.5531 <0.001 

 
p-values are corrected using the Bonferroni method 
r: Pearson’s correlation coefficient 
HCP: Human Connectome Project 
Significant results are in bold 
Only results for neuromaps that yielded a significant association with at least one latent dimension are shown 
 
 
 


