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,Panopticum of lattice fermions,

Classical lattice fermion actions:

• Naive fermions (2d species in d space-time dimensions)

• Wilson fermions (Nc4NxNyNzNt × ditto matrix in d = 4 dimensions)

• Staggered fermions (reduction by 2d/2, hence size NcNxNyNzNt × ditto)

• Overlap/domain-wall fermions (unique unitary part of aDW − ρ)

Novel lattice fermion actions:

• Minimally doubled fermions (Karsten-Wilczek, Boriçi-Creutz, ...)

• Ameliorated Wilson fermions (Brillouin, hypercube, ...)

• Staggered fermions with lifting (Adams, Hoelbling, ...)

Issues to be considered:

• Nielsen-Ninomya theorem (“topology”)

• suitability for heavy quark physics (dispersion relation, ...)

• Symanzik scaling for a→ 0

• suitability for lattice perturbation theory (LPT)

• computational efficiency (MPI/PGAS, OpenMP/OpenACC/cuda, SIMD)
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,Introduction: Naive and Wilson fermions,

• ,Naive fermions,

Dnai(x, y) =
∑
µ

γµ∇µ(x, y) +mδx,y

Dnai(p) = i
∑
µ

γµ
1

a
sin(apµ) +m

= i
∑
µ

γµp̄µ +m with p̄µ ≡
1

a
sin(apµ)

• ,Wilson fermions,

DW(x, y) =
∑
µ

γµ∇µ(x, y)−
ra

2

∑
µ

△µ(x, y) +mδx,y

DW(p) = i
∑
µ

γµ
1

a
sin(apµ) +

r

a

∑
µ

{
1− cos(apµ)

}
+m

= i
∑
µ

γµp̄µ +
ra

2

∑
µ

p̂2µ +m with p̂µ ≡
2

a
sin(

apµ
2

)
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,Introduction: Karsten-Wilczek and Borici-Creutz fermions,

• ,Karsten-Wilczek fermions,

DKW(x, y) =
∑
µ

γµ∇µ(x, y)− i
ra

2
γ4

∑
i=1:3

△i(x, y) +mδx,y

DKW(p) = i
∑
µ

γµ
1

a
sin(apµ) + i

r

a
γ4

∑
i=1:3

{
1− cos(api)

}
+m

= i
∑
µ

γµp̄µ + i
ra

2
γ4

∑
i=1:3

p̂2i +m

• ,Borici-Creutz fermions,

DBC(x, y) =
∑
µ

γµ∇µ(x, y)− i
ra

2

∑
µ

γ′µ△µ(x, y) +mδx,y

DBC(p) = i
∑
µ

γµp̄µ + i
r

a

∑
µ

γ′µ
{
1− cos(apµ)

}
+m

= i
∑
µ

γµp̄µ + i
ra

2

∑
µ

γ′µp̂
2
µ +m

[
γ′µ ≡ ΓγµΓ, Γ ≡

1√
d

∑
µ

γµ

]
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• ,Karsten-Wilczek free-field eigenvalues versus r in 4D,

Spectrum at r = 0 is naive (i.e. 4-fold staggered) spectrum.

Spectrum at any r is on imaginary axis (chiral symmetry, horizontally displaced).

Spectrum at r = 1 covers range [−7, 7] on imaginary axis (worse CN than staggered).

KW species chain is 16→ 14→ 8→ 2 with transistions at r = 1
6,

1
4,

1
2 [2003.10803].
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• ,Borici-Creutz free-field eigenvalues versus r in 4D,

Spectrum at r = 0 is naive (i.e. 4-fold staggered) spectrum.

Spectrum at any r is on imaginary axis (chiral symmetry, horizontally displaced).

Spectrum at r = 1 covers range [−4.8284, 2+2
√
2] on imag. axis (intermediate CN).

BC species chain is 16→ 10→ 2 with transitions at r = 1√
3
, 1√

2
[2003.10803].
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,Pole position drift for KW fermions in 2D (annihilate at r=0.5),

KW in 2D, log(denominator), r=0.001
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i + (p̄d +
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2 [arXiv:2003.10803].
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,Pole position drift for BC fermions in 2D (merge at r=0.57735),

BC in 2D, log(denominator), r=0.001
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Contour plots of
∑

λ p̄
2
λ − ar

∑
λ p̄λp̂

2
λ + a2r2

4

∑
λ p̂

4
λ + 2ar

d

∑
ρ,σ p̄ρp̂

2
σ [2003.10803].
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,Eigenvalues and topology with Wilson fermions,

• |q| would-be zero modes in physical branch (unchanged in 4D), additive mass shift

• L/R-eigenmode sandwich ⟨ψ|.|ψ⟩ ≡ ⟨L|.|R⟩ for non-chiral D [Hip et al 2001]

• plot (and subsequent ones) taken from [arXiv:2203.15699] with J.Weber

Add-on: central-branch yields 2 (4D: 6) species (no chiral symmetry despitemcrit = 0)
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,Eigenvalues and topology with Brillouin fermions,

DB =
∑

µ γµ∇µ− r
2△ like Wilson but ∇µ and △ with hypercubic stencil (3d-points)

• |q| would-be zero modes in physical branch (unchanged in 4D), additive mass shift

• L/R-eigenmode sandwich ⟨ψ|.|ψ⟩ ≡ ⟨L|.|R⟩ for non-chiral D (compare 1302.0773)

Add-on: use as overlap-kernel, already close to shifted-unitary [arXiv:1701.00726].
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,Eigenvalues and topology with staggered fermions,

2|q| would-be zero modes (changes to 4|q| in 4D), remnant chiral symmetry U(1)ϵ

ϵ ≡ γ5⊗ξ5 not sensitive to topology (see “backup pages” for meaning of γµ⊗ξν)
Γ5 ≃ γ5⊗ 1 crafted to “turn around” chirality of second mode (both point down)

Ξ5 ≃ 1⊗ξ5 not sensitive to topology (Γ5 and Ξ5 depend on gauge-field U)

1 ≡ 1⊗ 1 not sensitive to topology (like ϵ not shown)
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,Eigenvalues and topology with naive fermions,

Dnaive =
∑
µ

ηµ∇µ

• eigenvalue spectrum like staggered, but 2-fold extra degeneracy (4-fold in 4D)

• γ5-chiralities exactly zero (like ϵ-chiralities for staggered)

• suitable chirality operator is X = Csym ⊗ γ5 (4 needles down, 16 in 4D)
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,Eigenvalues and topology with Karsten-Wilczek fermions,

• 2|q| would-be zero modes at r = 1 (unchanged in 4D), remnant chiral symmetry

• pertinent L/R-eigenmodes of DKW not sensitive to γ5

Operator X can be crafted to have ⟨L|X|R⟩ ≠ 0 with L/R-eigenmodes of DKW

Options are X = 1
2(C1 + C2)

2 ⊗ γ5 and X = Csym ⊗ γ5 with Cµ ≡ 1
2△µ + 1
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• ,Transition Dnaive → DKW as a function of r on |q| = 1 configuration,

Findings in [2203.15699]:

Im(λKW(r)) nearly saturates KW free-field bound

KW species chain in 2D is 4→ 2 (transition at r = 0.5)

number of would-be zero modes evolves as 4|q| → 2|q|
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• ,Spectral flow with Karsten-Wilczek fermions,

• eigenvalues of HKW ≡ γ5(DKW +mCsym ⊗ 1) versus am

• choice matches X = Csym ⊗ γ5 being a good chirality operator for DKW

• sign of slope for |λ| ≪ 1 reflects chirality (cf. needle down)

• near-degeneracy much better than for BC fermions (cf. below)

• dull choice γ5(DKW +m) amounts to wrong chirality operator
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,Eigenvalues and topology with Borici-Creutz fermions,

• 2|q| would-be zero modes at r = 1 (unchanged in 4D), remnant chiral symmetry

• pertinent L/R-eigenmodes of DBC not sensitive to γ5 (not shown)

Operator X can be crafted to have ⟨L|X|R⟩ ≠ 0 with L/R-eigenmodes of DBC

Options are X = 1
2(C1 + C2)

2 ⊗ γ5 and X = (2Csym − 1)⊗ γ5 with Cµ ≡ 1
2△µ + 1
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• ,Transition Dnaive → DBC as a function of r on |q| = 1 configuration,

Findings in [2203.15699]:

Im(λKW(r)) nearly saturatess BC free-field bound

KW species chain in 2D is 4→ 2 (transition at r = 1√
3
)

number of would-be zero modes evolves as 4|q| → 2|q|
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• ,Spectral flow with Borici-Creutz fermions,

• eigenvalues of HBC ≡ γ5(DBC +m[2Csym − 1]⊗ 1) versus am

• choice matches X = [2Csym − 1]⊗ γ5 being a good chirality operator for DBC

• sign of slope for |λ| ≪ 1 reflects chirality (cf. needle down)

• near-degeneracy much worse than for KW fermions (cf. above)

• dull choice γ5(DBC +m) amounts to wrong chirality operator
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,Topological charge via Wilson/Brillouin fermion,

qW[U ] = −m tr[(DW +m)−1I⊗γ5] , qB[U ] = −m tr[(DB +m)−1I⊗γ5]

• apparent pole structure plausible (see App. C of arXiv:2203.15699) from

qW ≃ m
2(2r +mcrit)

2

(m−mcrit)(2r +mcrit)(4r + 2mcrit)
=

m

m−mcrit
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,Topological charge via staggered/naive fermion,

qS[U ] = −m
2
tr[(DS +m)−1Γ50] , qN[U ] = −m

4
tr[(DN +m)−1Csym⊗γ5]

• two-species formulation requires factor 1
2 [staggered]

• four-species formulation requires factor 1
4 [naive]

• no additive mass shift with qS[U ] or qN[U ] (chiral symmetry)
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,Topological charge via KW/BC fermion,

qKW[U ] = −m
2
tr[(DKW +m)−1XKW] , qBC[U ] = −m

2
tr[(DBC +m)−1XBC]

XKW =

{
1
2(C1 + C2)

2⊗γ5
Csym⊗γ5

, XBC =

{
1
2(C1 + C2)

2⊗γ5
(2Csym − 1)⊗γ5

• two-species formulation requires factor 1
2 [KW and BC]

• no additive mass shift for both KW an BC (chiral symmetry)
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,Summary (“part 1”),

KW and BC fermions have matrix size like Wilson fermions (Nc4NxNyNzNt in 4D).

KW and BC fermions have exact chiral symmetry (eigenvalues on imaginary axis).

KW and BC fermions have condition number less favorable than staggered fermions.

They have 2|q| would-be zero modes with opposite chiralities (like staggered) in 2D.

This figure remains 2|q| in 4D (while staggered fermions have 4|q| in 4D).

With an appropriate chirality operator

all lattice fermions perceive correct qtop[U ].
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,Dispersion relations of 4D fermion actions,

• ,Dispersion relation of naive fermion,

Dnai =
∑
µ

γµ∇µ +m = i
∑
µ

γµp̄µ +m

Gnai =
−i

∑
µ γµp̄µ +m

(i
∑

ρ γρp̄ρ +m)(−i
∑

σ γσp̄σ +m)
=
−i

∑
µ γµp̄µ +m

p̄2 +m2

aE =

√
asinh

(∑
i

sin2(api) + (am)2
)

• ,Dispersion relation of Wilson fermion,

At r = 1 the DR for Wilson fermion simplifies to

2 cosh(aE)
[
d+ am−

∑
i

cos(api)
]
= 1 +

∑
i

sin2(api) +
[
d+ am−

∑
i

cos(api)
]2

which one solves for aE > 0 by means of acosh(x) = ln(x+
√
x2 − 1) for x > 1.
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• ,Dispersion relation of KW fermion,

GKW =
−i

∑
µ γµp̄µ − iar2 γd

∑d−1
i=1 p̂

2
i +m∑d−1

i=1 p̄
2
i + (p̄d +

ar
2

∑d−1
i=1 p̂

2
i )

2 +m2

sinh(aE) = ir

d−1∑
i=1

{1− cos(api)} ±

√√√√d−1∑
i=1

sin2(api) + (am)2

• ,Dispersion relation of BC fermion,

GBC =
−i

∑
µ γµp̄µ − iar2

∑
µ γ

′
µp̂

2
µ +m∑

λ p̄
2
λ − ar

∑
λ p̄λp̂

2
λ + a2r2

4

∑
λ p̂

4
λ + 2ar

d

∑
ρ,σ p̄ρp̂

2
σ +m2

0 =
∑
i

[
sin(api)− r{1− cos(api)}

]2
+
[
i sinh(aE)− r{1− cosh(aE)}

]2
+

4r

d

∑
i,j

sin(api){1− cos(apj)}+
4ir

d
sinh(aE)

∑
j

{1− cos(apj)}

+
4r

d

∑
i

sin(api){1− cosh(aE)}+ 4ir

d
sinh(aE){1− cosh(aE)}+ (am)2
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• ,Dispersion relation of naive fermion,

0 1 2 3 4 5

0

0.5

1
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2.5
Naive operator, L/a=64, am=0

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5
Naive operator, L/a=64, am=0.5

Momentum configurations with |p⃗| = 0, π,
√
2π,
√
3π, 2π realize 1,4,6,4,1 species.

Useful feature for heavy-quark physics: cut-off effects at |ap⃗| = 0 are quadratic:

aE = am

{
1− 1

6
(am)2 +

3

40
(am)4 +O((am)6)

}
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• ,Dispersion relation of Wilson fermion,

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5
Wilson operator, L/a=64, am=0, r=1
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0
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1

1.5

2

2.5
Wilson operator, L/a=64, am=0.5, r=1

Inconvenient feature for heavy-quark physics: cut-off effects at |ap⃗| = 0 are linear:

aE = am

{
1− r

2
am+

3r2 − 1

6
(am)2 − [5r2 − 3]r

8
(am)3 +O((am)4)

}
Non-zero momenta up to |ap⃗| = O(1) seem affected by common mismatch im am.
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• ,Dispersion relation of KW fermion,

0 1 2 3 4 5

0
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Karsten-Wilczek, L/a=64, am=0, r=1
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Karsten-Wilczek, L/a=64, am=0.5, r=1

Feature for heavy-quark physics: cut-off effects at |ap⃗| = 0 are quadratic:

aE = am

{
1− 1

6
(am)2 +

3

40
(am)4 +O((am)6)

}
Non-zero momenta up to |ap⃗| = O(1) seem well represented [arXiv:2003.10803].
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• ,Dispersion relation of BC fermion,

0 1 2 3 4 5
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Feature for heavy-quark physics: cut-off effects in real/imag part are linear/quadratic

aE = am

{
1+

ir

4
am− 3r2+16

96
(am)2+

i[r3−3r]
16

(am)3− 805r4−960r2−768
10240

(am)4
}

Unclear/questionable features for tiny momenta at am ≃ 0.5 [arXiv:2003.10803].
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,Summary (“part 2”),

Naive fermions have (for any am) very nice dispersion relation (despite doublers).

Wilson fermions at am = 0 have very nice dispersion relation (an no doublers).

Wilson fermions at am > 0 have large O(a) cutoff effects (visible at ap⃗ = 0⃗).

KW fermions have (for any am) very nice dispersion relation.

KW fermions have same perturbative expansion in am as Wilson fermions at ap⃗ = 0⃗.

BC fermions have not-so-nice features at any am and ap⃗.

BC fermions have factors of i in perturbative expansion in am at ap⃗ = 0⃗.

KW fermions are interesting for heavy-quark physics.

BC fermions likely to cause troubles in physics applications.
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,Schwinger Model: QED in 2D with any Nf ,

SM at Nf =0 simulated with Metropolis/overrelax/instanton-hit/parity-hit.
Topological charge autocorrelation time is O(1) at any β [arXiv:1203.2560].

Wilson gauge action per site:

swil(x) = 1−Re(U(x)) = 1−cos(θ(x))

Plaquette at position x = (x1, x2):

U(x) = U1(x)U2(x+e1)U
†
1(x+e2)U

†
2(x)

U(x) = exp(iθ(x))

Two gluonic topological charges:

q
(n)
raw =

∑
sin(θ(n)(x))/(2π) ∈ R (“fth/Z”)

q
(n)
geo =

∑
θ(n)(x)/(2π) ∈ Z (“geometric”)

θ(n) plaquette angle after n smearings

qopt(x) is clover-leaf version of qraw(x)
0 200 400 600 800 1000
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q
nai

q
geo

Operators use n=0, 1, 3 steps of ρ=0.25 stout-smearing [Morningstar Peardon 2003].
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,Schwinger Model: topological charge distributions,
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,Taste splittings: aδstag under gradient flow,

Eigenvalues aλ1, ..., aλ15 of Dstag/i on a |q|=1 configuration at (β, L/a) = (7.2, 24)
versus gradient flow time τ/a2. Note that λ1 pairs with −λ1, while λ2 ≃ λ3 pair, and
so on. Splittings defined with proper pairing: δ1 = 2λ1, δ2 = λ3 − λ2, ... for |q| = 1.

Main investigation carried out with n = 0, 1, 3 steps of ρ = 0.25 stout smearing,
paramount to τ/a2 = 0, 0.25, 0.75 (up to small discretization effects).
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,Taste splittings: aδ on “central ensemble” with nstout = 0,
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,Taste splittings: aδ on “central ensemble” with nstout = 1,
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,Schwinger Model: ensemble details,

β 3.2 5.0 7.2 12.8 20.0 28.8 51.2 80.0
L/a 16 20 24 32 40 48 64 80
nstout 0,1,3 0,1,3 0,1,3 0,1,3 0,1,3 0,1,3 0,1,3 0,1,3

s
(0)
wils 0.17625 0.10662 0.07230 0.03989 0.02533 0.01752 0.00981 0.00627
pinst.hit 0.750(2) 0.737(2) 0.729(2) 0.725(2) 0.726(2) 0.722(2) 0.721(2) 0.721(1)

Table 1: Ensembles used in the “cut-off effect” study; they implement constant
physical volume through (L/a)2/β = 80. For every choice of (β, L/a) three ensembles
of 10 000 configurations are generated, to be used with 0, 1 or 3 steps of ρ = 0.25

stout smearing, respectively. The analytic result s
(0)
wils is taken from [Elser:2001pe].

β 7.2 7.2 7.2 7.2 7.2
L/a 16 20 24 32 40
nstout 1 1 1 1 1
pinst.hit 0.597(2) 0.677(2) 0.729(2) 0.799(2) 0.838(2)

Table 2: Ensembles used in the “finite volume” study; each one contains 10 000
configurations and is used after a single step of ρ = 0.25 stout smearing. Also the
acceptance ratio of the instanton hit update at the respective (β, L/a) is given.
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,Taste splittings: would-be zero mode scaling for nstout = 0,

all a2
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,Taste splittings: would-be zero mode scaling for nstout = 1,

all a3
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,Taste splittings: non-topological mode scaling for nstout = 0,

all a2
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,Taste splittings: non-topological mode scaling for nstout = 1,

a2,3
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,Summary (“part 3”),

In 2D all of Dstag, DKW, DBC are minimally doubled, since on any U|q|=1 one finds

• 2 would-be zero modes of Dstag with opposite chiralities (invisible to ϵ)
• 2 would-be zero modes of DKW with opposite chiralities (invisible to γ5)
• 2 would-be zero modes of DBC with opposite chiralities (invisible to γ5)

but in all cases appropriate chirality operators can be defined [arXiv:2203.15699].

In quenched SM intra-taste splittings δstag, δKW, δBC are measured over a wide
β-range, considering would-be zero modes and non-topological modes separately.

nstout = 0 nstout= 1, 3
wbz ntm wbz ntm

δstag ∝ a# 1 1 2 2
δKW ∝ a# 1 1 2 1
δBC ∝ a# 1 1 2 1

Power # in Symanzik scaling law δ ∝ a# depends on
would-be zero mode (wbz) versus non-topological mode (ntm)

and/or smearing level (which is disturbing).
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,Flavored mass/lifting terms,

Cµ(x, y) =
1
2[Uµ(x)δx+µ̂,y + U†

µ(x−µ̂)δx−µ̂,y] =
1
2a

2△µ(x, y) + δx,y

MS = 1 Scalar (0-link) 1

MV =
∑
sym

Cµ Vector (1-link) 1
4[C1+C2+C3+C4]

MT =
∑
sym

∑
per
CµCν Tensor (2-link) see detail

MA =
∑
sym

∑
per
CµCνCρ Axial (3-link) see detail

MP =
∑
per
CµCνCρCσ Pseudo (4-link) 1

24[C1C2C3C4 + perms] = Csym

detail T: 1
12[C1C2 + perm] + ...+ 1

12[C3C4 + perm]

6 square brackets [...] each of which contains 2 terms

deatil A: 1
24[C2C3C4 + perms] + ...

4 square brackets [...] each of which contains 6 terms

Brillouin fermion: dim=5 term (Laplacian) is MV +MT+MA+MP

Brillouin fermion: dim=4 term is
∑

µ γµ∇iso
µ instead of

∑
µ γµ∇std

µ

Creutz, Kimura,Misumi (10, 11)
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,Review of staggered mass/lifting terms,

The (γµ⊗1) and (γ5⊗1) “taste singlet” operators are defined by

Γµ(x, y) ≡ Γµ0(x, y) =
1

2
ηµ(x)

[
Uµ(x)δx+µ̂,y + U†

µ(x−µ̂)δx−µ̂,y

]
Γ5(x, y) ≡ Γ50(x, y) =

1

4!

∑
perm

ϵpermΓ1Γ2Γ3Γ4

and the (1⊗ξµ) and (1⊗ξ5) “spinor singlet” operators are defined by

Ξµ(x, y) ≡ Γ0µ(x, y) =
1

2
ζµ(x)

[
Uµ(x)δx+µ̂,y + U†

µ(x−µ̂)δx−µ̂,y

]
Ξ5(x, y) ≡ Γ05(x, y) =

1

4!

∑
perm

ϵpermΞ1Ξ2Ξ3Ξ4

with the consequence that both Γ50 and Γ05 are 4-hop operators. Furthermore, the
latter two operators relate to each other by a simple Γ55 operation (from left or right).

Acceptable mass terms are proportional to (1⊗1) or (1⊗ξ5) or possibly (1⊗ξµξν) .
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,Adams species lifting,

In practice it is advantageous to introduce the commutators in spinor and taste space

Γµν(x, y) ≡
i

2

(
ΓµΓν − ΓνΓµ

)
←→ γµν⊗1

Ξµν(x, y) ≡
i

2

(
ΞµΞν − ΞνΞµ

)
←→ 1⊗ξµν

respectively, with γµν ≡ i
2[γµ, γν] a.k.a. σµν and ξµν ≡ i

2[ξµ, ξν], which yields

Γ50(x, y) ≃ −1
6

(
Γ12Γ34 − Γ13Γ24 + Γ14Γ23 + Γ23Γ14 − Γ24Γ13 + Γ34Γ12

)
Γ05(x, y) ≃ −1

6

(
Ξ12Ξ34 − Ξ13Ξ24 + Ξ14Ξ23 + Ξ23Ξ14 − Ξ24Ξ13 + Ξ34Ξ12

)

Adams: Promote 2 of the 4 tastes of Dstag to doublers by Γ05 = Ξ5 ≃ (1⊗ξ5).
Key observation is that the remaining 2 species share one chirality.

Corollary: It makes sense to apply overlap construction to shifted kernel DA−ρ.
The resulting operator will be doubled, and the two species will be chiral.
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