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Abstract
We present a benchmarking protocol that combines the characterization of boron nitride (BN)
crystals and films with the evaluation of the electronic properties of graphene on these substrates.
Our study includes hBN crystals grown under different conditions (atmospheric pressure high
temperature, high pressure high temperature, pressure controlled furnace) and scalable BN films
deposited by either chemical or physical vapor deposition (PVD). We explore the complete process
from boron nitride growth, over its optical characterization by time-resolved cathodoluminescence
(TRCL), to the optical and electronic characterization of graphene by Raman spectroscopy after
encapsulation and Hall bar processing. Within our benchmarking protocol we achieve a
homogeneous electronic performance within each Hall bar device through a fast and reproducible
processing routine. We find that a free exciton lifetime of 1ns measured on as-grown hBN crystals
by TRCL is sufficient to achieve high graphene room temperature charge carrier mobilities of
80000cm2 (Vs)−1 at a carrier density of |n|= 1× 1012 cm−2, while respective exciton lifetimes
around 100ps yield mobilities up to 30000cm2 (Vs)−1. For scalable PVD-grown BN films, we
measure carrier mobilities exceeding 10000cm2 (Vs)−1 which correlates with a graphene Raman
2D peak linewidth of 22cm−1. Our work highlights the importance of the Raman 2D linewidth of
graphene as a critical metric that effectively assesses the interface quality (i.e. surface roughness) to
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the BN substrate, which directly affects the charge carrier mobility of graphene. Graphene 2D
linewidth analysis is suitable for all BN substrates and is particularly advantageous when TRCL or
BN Raman spectroscopy cannot be applied to specific BN materials such as amorphous or thin
films. This underlines the superior role of spatially-resolved spectroscopy in the evaluation of BN
crystals and films for the use of high-mobility graphene devices.

1. Introduction

Boron nitride (BN) with its remarkable thermal
stability, chemical inertness and robust mechanical
properties has long been used for various applica-
tions [1–4]. It has been demonstrated that hexagonal
boron nitride (hBN) is of particular importance for
applications in 2D material systems, exhibiting prop-
erties crucial for photonics and optoelectronics, such
as efficient deep UV emissions [5, 6] and quantum
photonics capabilities [7–10]. The high thermal con-
ductivity [11, 12], the large electronic bandgap [5],
and the ultra-flat and inert surface [13] are import-
ant prerequisites for the use as a substrate for other
2D materials or for interface engineering [14–18].
2D materials encapsulated in hBN allow for record-
breaking charge carrier mobilites in graphene [19–
24], high electronic and optical quality in trans-
ition metal dichalcogenides (TMDs) [25–32] or, for
example, bilayer graphene quantum devices with
ultra-clean tunable bandgaps [33–36].

In fundamental research, hBN flakes exfoliated
from bulk crystals grown either at high temperature
and high pressure (HPHT) [37–39] or at atmospheric
pressure and high temperature (APHT) [6, 24, 40–
50] are employed for high-quality device fabrication
due to their superior crystal quality. The synthesis
of high-quality hBN crystals in a pressure-controlled
furnace (PCF) is a recent development that offers new
opportunities for improvingmaterial quality [51, 52].
hBN single crystals are small, a few millimeters at
most, and therefore do not meet industrial manufac-
turing requirements. The transition of BN from the
use in fundamental research to industrial applications
requires process development capable of providing
large area single crystal or polycrystalline films that
meet both device requirements and high volume pro-
duction needs.

Techniques like chemical vapor deposition (CVD)
[53–58], metal-organic CVD (MOCVD) [59–62],
molecular beam epitaxy (MBE) [63–66], and phys-
ical vapor deposition (PVD) [67, 68] are under devel-
opment, offering potential platforms for BN sub-
strates with sufficient interface and/or bulk qualities
for the desired technological applications. Recently,
amorphous (or nanocrystalline) boron nitride (aBN),
has gained interest due to its ability to be grown at
room temperature on arbitrary substrates [69] and
its low dielectric constant [70–72]. Especially the

full encapsulation of CVD-grown graphene in direct-
grown aBN was recently reported to have promising
electronic properties, showing its potential as a scal-
able substrate for graphene and other 2D materi-
als [71].

The evolving diversity of available BN
substrates—from high-quality hBN crystals to hBN/-
aBN films—underlines the need for comparable
and meaningful characterization methods of both
the crystal quality itself and the ability to be used
as substrate in van der Waals heterostructures. To
assess the crystal quality, BN is mostly investigated
by cathodoluminescence (CL) [73–75], photolumin-
escence (PL) [64, 76, 77] or Raman spectroscopy
[2, 78, 79]. Raman spectroscopy gives a rapid and
non-invasive way to extract the quality of BN films
and therefore is an indispensable tool to efficiently
monitor the parameter tuning during optimization
of growth processes. On the other side, CL measure-
ments and especially time-resolved cathodolumin-
escence (TRCL) measurements yield a much more
sensitive way to evaluate the crystal quality and to
gain a deeper understanding of the type of crystal
defects [73–75]. Here, the free exciton lifetime, which
is limited by exciton-defect scattering, yields a sensit-
ive benchmark for the bulk crystal quality. However,
CL measurements are not suitable for most scalable
BN growth approaches as they are only applicable
to crystalline and thick (>10µm) hBN. While these
evaluations are highly important for benchmarking
the quality of hBN crystals for optical applications
with hBN as the active layer, methods to evaluate the
surface quality become equally important when used
as a substrate [80]. For example, correlations between
the amount or type of defects and the surface rough-
ness seem possible but remain a topic under investig-
ation [81].

Graphene, due to its exceptional high charge
carrier mobility, is one of the most interesting
2D materials to be used in combination with BN.
Additionally to the interest due to its electronic prop-
erties, graphene is highly sensitive to charge dis-
order and surface roughness of the substrate, drastic-
ally limiting the device performance [20, 82]. Due
to both, its huge potential for future high-mobility
applications and its high sensitivity to the underly-
ing substrate, the evaluation of graphene itself on the
substrate of interest is an appealing way to investig-
ate the suitability of various BN films or crystals as a
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substrate for 2Dmaterials. Spatially-resolved confocal
Raman microscopy on graphene encapsulated in BN
provides a very powerful and sensitive way to directly
assess strain, doping, and nm-strain variations [80,
83–85] and directly link it to the electronic proper-
ties extracted from charge transport measurements
on Hall bar devices [22–24, 82].

Here, we present a comprehensive evaluation of
various BN substrates and present a benchmarking
protocol covering the characterization of the BN as
well as the evaluation of the electronic properties
of exfoliated graphene on these BN substrates. Our
study includes the growth of both high-quality hBN
crystals grown via APHT or in a PCF and the growth
of scalable BN films via PVD or CVD (section 2).
We extract the free exciton lifetime from TRCLmeas-
urements to compare the crystal quality of BN crys-
tals and evaluate both exfoliated flakes and films
via Raman spectroscopy (section 3). Using exfoliated
graphene, we fabricated dry-transferred devices on
the BN substrates to assess the interface quality via
spatially-resolved Raman spectroscopy (section 4). To
establish reliable benchmarks we focus on the full
width at half maximum (FWHM) of the graphene
Raman 2D peak, which we identify as the most
sensitive benchmark for an early-stage evaluation
of the suitability for a diverse set of BN substrates
(section 5). Following a newly developed fabrication
scheme, with a focus on rapid processing, we build
Hall bar structures (section 6) to extract the charge
carrier mobility at different charge carrier densities
(section 7). We demonstrate that graphene encapsu-
lated in APHT hBN crystals compares in electronic
quality to graphene encapsulated in HPHT-grown
hBN crystals, reaching room temperature charge car-
rier mobilities around 80000cm2 (Vs)−1 at a charge
carrier density of n= 1× 1012 cm−2. Importantly,
we identify a free exciton lifetime of above 1ns to
be sufficient to achieve these high charge carrier
mobilities and of 100ps for charge carrier mobilit-
ies up to 30000cm2 (Vs)−1. Specifically, we demon-
strate that graphene on PVD-grown nanocrystalline
boron nitride with a graphene 2D peak FWHMbelow
22cm−1 consistently yields charge carrier mobilit-
ies exceeding 10000cm2 (Vs)−1. This underscores the
potential of PVD-grown BN films as scalable sub-
strates for high-mobility graphene devices.

2. Growth and preparation of boron
nitride

In figure 1 the growth and preparation conditions of
hBN crystals (APHT and PCF growth) and of BN thin
films (PVD and CVD growth) are summarized.

2.1. Atmospheric pressure and high temperature
(APHT)
The hBN crystals in this study were grown from
an iron flux (at RWTH) or chromium-nickel (at
RWTH and GEMaC) flux via the APHT method (see
reference [24] for details on the growth at RWTH). A
schematic illustration of the growth setup is shown in
figure 1(a). The boron source is either boron powder
(RWTH) mixed with the metal pieces or a pyrolytic
BN crucible (GEMaC). The system is first annealed
at high temperature under a continuous gas flow of
either H2 and Ar (RWTH) or N2 (GEMaC) to min-
imize contaminations with oxygen and carbon. The
hBNcrystal growth is started upon introduction ofN2

while maintaining a constant pressure. After a soak-
ing phase at high temperature to saturate the metal
flux with B and N, the furnace is cooled down to a
lower temperature at a slow rate (typically between
0.5 ◦C/h and 4 ◦C/h). The system is then quickly
quenched down to room temperature. The resulting
thick hBN crystal layer is firmly attached to the under-
lying metal ingot, as seen in figure 1(a) (right upper
panel). The hBN crystal sheet can be detached from
the metal ingot by immersion in hydrochloric acid at
room temperature, see the detached crystal sheet in
the lower right panel of figure 1(a). This step does not
affect the quality of the hBNcrystals and simplifies the
further processing of the hBN crystals for exfoliation
and subsequent dry-transfer [24].

2.2. Growth in a pressure-controlled furnace (PCF)
In the PCF method, hBN crystals are grown from
the liquid phase of Li3BN2 −BN at high temperature
[52, 86, 87]. The Li3BN2 powder is pre-synthesized
from Li3N (Sigma Aldrich, purity> 99.5%) [88] and
mixed with commercial hBN powder (20 wt% hBN
and 80 wt% Li3BN2) in a molybdenum crucible.
Since Li3BN2 is very sensitive to air and moisture, the
growth preparation is performed under inert condi-
tions and careful handling is necessary throughout
the whole process. Both, hBN powder and crucibles
are pre-treated at 1200 ◦C under vacuum and an
Ar/H2 gas mix to remove potential contaminations.
The growth is performed in a pressure-controlled
furnace (PCF) [51, 52] (schematically shown in
figure 1(b)) during a fast cooling after a dwelling
time of 2 h at 1800 ◦C and a pressure of 180 MPa
under Ar atmosphere. The temperature and the pres-
sure are increased at a rate of 100 ◦C min−1 and 10
MPa min−1. The chamber is initially purged three
times (Ar filling followed by pumping) to remove
oxygen andmoisture. The sample obtained is an ingot
composed of hBN crystals embedded in a solidified
Li3BN2 matrix. Li3BN2 dissolution is then performed
to retrieve individual crystals. They show a lateral size
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Figure 1. Overview of growth techniques for hBN crystals and films. (a) Atmospheric pressure high temperature growth process
with schematic of a gas flow furnace. Optical images of the resulting hBN crystals on top of the iron ingot and of the crystals after
detaching from the iron ingot. (b) Schematic of the growth of hBN crystals in a pressure controlled furnace and optical image of
hBN crystal after dissolution of Li3BN2. (c) CVD growth of hBN on Pt(111) substrate and an optical image of the transferred
hBN film, approximately 1nm thick, on a Si/SiO2 wafer piece. (d) Schematic of the physical vapor deposition growth setup for
BN and optical image of Si/SiO2 wafer with the PVD-grown film homogeneously covering the wafer with a thickness of 30nm.

ranging from several hundreds of micrometers to few
millimeters, exemplary shown in figure 1(b), in the
right image. The crystals have been previously used
as encapsulants for TMDs and graphene to obtain
optical and electronic devices [52, 89].

2.3. Chemical vapor deposition (CVD)
For the growth of hBN layers, Pt(111) thin films
with a thickness of 500nmwere prepared on sapphire
wafers [90]. The hBN films were grown via CVD in
an ultra-high vacuum cold-wall chamber for wafers
up to 4-inch [91, 92]. Prior to all hBN preparations,
the Pt/sapphire substrates were cleaned by a series of
argon sputtering, O2 exposure and annealing cycles to
1200K until sharp Pt(111) (1×1) LEED patterns were
observed. Subsequently, hBN layers were prepared at
temperatures above 1000K with borazine (HBNH)3
as precursor with a partial pressure of 10−7mbar
(figure 1(c)). The quality of grown hBN layers were
evaluated with scanning low energy electron diffrac-
tion (x-y LEED), x-ray photoelectron spectroscopy
(XPS), ultraviolet photoelectron spectroscopy (UPS),
scanning tunneling microscopy (STM) and atomic
force microscopy (AFM). The reported thickness is
derived from XPS intensity values.

The transfer procedure employs the electrochem-
ical ‘bubbling’ method [93]. First, the hBN/Pt(111)
sample was spin-coated with 4wt% polymethyl
methacrylate (PMMA) (495K). Then we put the
PMMA/hBN/Pt sample as working electrode and a Pt
wire as counter electrode in a 1.0M KCl solution. A
negative voltage between −3V and −5V was applied

to the sample to delaminate the hBN/PMMA film
from the substrate. The delaminated hBN/PMMA
film was then rinsed in ultrapure water (Milli-Q
Advantage A10) and transferred onto a clean 280nm
Si/SiO2 substrate with gold markers. In the next step,
the PMMA was removed via a sequence of acet-
one/ethanol baths and gradual annealing in air at
temperatures up to 600K for 3h. Figure 1(c) shows a
representative transferred hBN film with a thickness
of approximately 1nm.

2.4. Physical vapor deposition (PVD)
Thin nanocrystalline BN films are grown via phys-
ical vapor deposition using an ion beam assisted
deposition process (IBAD-PVD). The films exhibit
hexagonal bonding structure, as assessed by x-ray
absorption near edge spectroscopy (XANES) [94, 95]
but lack of x-ray diffraction. The films were grown
directly on Si/SiO2 wafers with an oxide thickness of
285nm and pre-defined Cr/Au marker. The growth
was performed at room temperature using nitrogen
gas and a solid boron source. The IBAD process con-
sisted in the interaction of a directional beam of
500eV nitrogen ions from a Kaufman source, with
concurrent boron atoms from an electron beam evap-
orator. The growth setup is schematically depicted in
figure 1(d). The N-ion and B-atom fluxes were care-
fully tuned to obtain stoichiometric BN and avoid
other BxNy phased and bonding configurations [67].
The thickness of the resulting BN film is 30nm and
homogenously covers the whole wafer, as shown in
figure 1(d).
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3. Cathodoluminesence and Raman
spectroscopy on BN crystals and films

The as-grown hBN crystals (APHT and PCF) are
examined by means of TRCL measurements and
spatially-resolved confocal Raman microscopy.
Raman spectroscopy offers a fast and non-invasive
tool to spatially probe optical phonons and their
lifetimes, which provide a measure of the crystallin-
ity of hBN [2]. Time-resolved cathodoluminescence
(TRCL) measurements allow to determine the life-
times of the free excitons, which are strongly affected
by scattering with defects, providing a valuable and
sensitive tool to locally probe the crystal quality of
hBN crystals.

3.1. Cathodoluminescence
TRCL measurements were performed on isolated
bulk hBN crystals. For each supplier (GEMaC,
RWTH, LMI), crystals from multiple growth batches
were investigated. The deep UV spectra were recor-
ded at room temperature in a JEOL7001F field-
emission-gun scanning electron microscope (SEM)
coupled to a Horiba Jobin-Yvon cathodolumines-
cence (CL) detection system, as described in detail in
earlier works [73–75]. To allow for time resolution, a
custom-built fast-beam blanker was installed inside
the SEM column, as described in [75]. The dynamics
of the free exciton population is captured by measur-
ing the time-dependent CL intensity in a wavelength
range of 215± 7.5nm with a temporal resolution of
100ps. This spectral range corresponds to the main
luminescence feature of high quality hBN crystals.
The 215nmCL signal results from the indirect exciton
recombination assisted via optical phonons. To focus
on bulk properties and minimize surface recombina-
tions, the electron beam acceleration voltage was set
to 15kV [73, 96]. The current was maintained at a
low value of 85pA to prevent nonlinear effects [97].
An exemplary TRCL measurement for each type of
hBN crystal investigated is shown in figure 2. At t= 0,
the luminescence peak intensity is normalized to 1,
to allow for better comparison of the time evolution.
The free exciton lifetime τCL is extracted by fitting
the first decay with a single exponential decay func-
tion [75]. We obtain τ = 0.15ns,1.67ns and 3.32ns
for PCF (LMI), APHT (RWTH) andAPHT (GEMaC)
crystals, respectively. Statistical evaluation (mean
and standard deviation) across different growth
batches and spatial positions on the crystals yielded
τ = (0.11± 0.07)ns,(1.4± 0.3)nsand(3.0± 0.4)ns
for 22, 13 and 8 measured areas on PCF (LMI),
APHT (RWTH) and APHT (GEMaC), respectively.
We emphasize the need for statistical evaluation due
to notable crystal-to-crystal variations.

The variation in free exciton lifetimes is associated
with differences in defect densities in the crystals.

Figure 2. Decay of the free exciton luminescence at 215nm
for hBN crystals grown by APHT (RWTH and GEMaC)
and PCF (LMI) measured by time-resolved
cathodoluminescence. The luminescence intensity is
normalized to 1 at t= 0 for all measurements. A
representative trace is shown for each crystal type together
with an exponential fit to extract the respective lifetime τCL.
The table in the inset shows the averaged lifetimes from
measurements at different crystal positions and batches
with the total number of measurements.

We note that APHT-grown crystals exhibit lifetimes
similar to those produced via the HPHT method
[75] which is consistent with a low defect density.
In contrast, PCF-grown crystals show significantly
shorter lifetimes. The higher defect density could res-
ult from vacancies, impurities, or structural anom-
alies, which all may affect the free lifetime. The vari-
ations in lifetimes, even within crystals grown by
the same method, highlights the need for careful
crystal selection for specific experiments or applic-
ations. Understanding these defect-induced changes
in the optical properties is crucial for the further
development of hBN applications in optoelectronics
and quantum technology. The benchmarking of hBN
crystals via TRCL also sets the stage for understand-
ing their role as substrates in graphene-based devices.
The observed variation in the exciton lifetime of hBN
grown by the different methods is expected to cor-
relate with the electronic quality of encapsulated 2D
materials. Its impact on the charge carrier mobility in
hBN/graphene/hBN Hall bar devices will be detailed
further below.

3.2. Confocal Raman spectroscopy
Raman spectroscopy is a practical and widely used
optical probe for characterizing both hBN crystals
and thin films. Its advantage of accessibility makes it
an important tool formonitoring the effect of changes
in the growth parameters on the crystal quality of
BN. The primary benchmark for assessing the crystal
quality of hBN via Raman spectroscopy is the FWHM
ΓE2g of the E2g Raman peak, which correlates with
the lifetime τE2g of optical phonons corresponding
to intralayer vibrations of B and N atoms [98]. The

5



2D Mater. 12 (2025) 015017 T Ouaj et al

Figure 3. Raman spectroscopy of hBN crystals for APHT (RWTH and GEMaC) and PCF (LMI) from left to right. (a)–(c) Optical
images of exfoliated hBN flakes that were spatially mapped by confocal Raman spectroscopy. (d)–(f) Spatially-resolved Raman
maps of the FWHM of the E2g mode for each flake shown in (a)–(c). (g)–(i) Representative Raman spectra with the statistical
distribution of the FWHM of each flake ((d)–(f)) as shown in the respective insets. The scale bars are 10µm.

contributions to the phonon linewidth in hBN with
a natural isotopic content of boron originate primar-
ily from isotopic disorder-induced scattering, anhar-
monic phonon decay, or impurity scattering [99].
Thus, in hBN with the same crystal structure and
isotope distribution, the variations in FWHM are
mainly due to the degree of disorder in the crystal [2].
Changes in bond lengths due to increased defect dens-
ity or not-purely sp2-hybridized bonds might also
impact the FWHM, as these factors contribute to
averaging effects over phonons of different frequen-
cies. Typically, high quality hBN crystals grown via
HPHT or APHT exhibit a FWHM around 8cm−1 [2,
79, 100]. For thin BN films this value can increase up
to 40cm−1 [2].

3.2.1. Experimental setup
Raman measurements were conducted using a com-
mercial confocal micro-Raman setup (WITec alpha
300 R) at room temperature. We utilized a 532nm
excitation wavelength, a laser power of 2mW and
a 100× magnification objective with a numerical
aperture of 0.9. The inelastically scattered light was
collected through a fibre (core diameter 100µm)
and sent to a CCD through a half meter spectro-
meter equipped with a 1200 linesmm−1 grating. For

linewidth analysis of high-quality hBN crystals, we
employed a grating with 2400 linesmm−1.

3.2.2. hBN crystals
We start by exfoliating thin hBN flakes from the bulk
crystals using tape (Ultron 1007 R) onto Si/SiO2

wafer with a 90 nm oxide layer and observe sim-
ilar distribution of thicknesses and lateral sizes for
flakes from all crystal suppliers. Flakes with thick-
nesses between 20nm and 40nm were selected based
on their color contrast towards the substrate [101],
as these thicknesses are optimal for building state-
of-the-art hBN-encapsulated graphene devices. In
figures 3(a)–(c), we present optical images of rep-
resentative flakes from the three suppliers ((a) for
APHT (RWTH), (b) for APHT (GEMaC), and (c)
for PCF (LMI)). All flakes look similar in terms
of contamination or thickness homogeneity. This is
inferred from the optical images in figures 3(a)–(c),
where each crystal flake shows a single homogenous
optical contrast to the substrate and no optically vis-
ible contaminations.

The FWHM of the E2g peak is extracted by fitting
a single Lorentzian function to the individual Raman
spectra. Spatially-resolved maps of the FWHM are
shown in figures 3(d)–(f). A respective single Raman
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Figure 4. Boron nitride films on Si/SiO2. (a) Optical microscope image of a PVD-grown BN film with a thickness of 30nm. (b)
Representative Raman spectrum of the PVD-grown BN film (position: red cross in (a)) (c) Surface topography measured by
atomic force microscopy. Inset shows a representative line profile along the red horizontal line in the map. (d) Optical microscope
image of a CVD-grown BN film which was transferred to Si/SiO2 (e) Representative Raman spectrum of the CVD-grown BN film
(position: red cross in (d)) (f) Histogram of the FWHM of the E2g hBN mode shown in (d) extracted from single Lorentzian fit.

spectrum at a representative position, along with the
corresponding histogram to the FWHM map, are
shown in figures 3(g)–(i).

There is a narrow hBN Raman peak around
1365cm−1 for all flakes. The maps in figures 3(d)–(f)
reveal a homogenous and narrow distribution of the
FWHM, suggesting uniform crystal quality through-
out the exfoliated flakes. A closer inspection of the
statistical distribution (insets of (g)–(i)), reveals a
Gaussian distribution of the FWHM around 8cm−1,
demonstrating high crystallinity for all flakes. These
values are comparable to previous studies on APHT
orHPHTgrownhBN [2]. Interestingly, we observe no
significant difference in the Raman FWHM between
PCF and APHT crystals. This observation seems sur-
prising since the CL lifetime of the PCF-grown hBN
flakes is more than an order of magnitude shorter
than the respective lifetimes of the APHT-grown hBN
crystals (see figure 2). It is, however, important to
emphasize again that main contributions to the E2g
peak’s FWHM in natural hBN results from isotopic
disorder [99], that is typically the same for all. While
isotopic disorder is generally the same for all hBN
crystals, variations in defect type and density can sig-
nificantly vary between different growth methods.
Our studies suggest that the presence of crystal defects
in high-quality hBN crystals can barely be probed
by Raman spectroscopy. Analyzing the lifetimes of
free excitons, on the other hand, offers a significantly
more sensitive tool for the local probing of crystal
defects.

3.2.3. BN films
Wenext evaluate boron nitride films, which are either
grown directly on the Si/SiO2 substrate (PVD) or
grown by means of CVD and then wet-transferred to
a Si/SiO2 substrate. In the case of boron nitride films,
cathodoluminescence measurements are not feasible,
mainly due to the small thickness of the films. An
optical image of the PVD-grown film is shown in
figure 4(a). We observe a homogeneously grown film
over the entire wafer with some spots where the BN
is damaged. In figure 4(b) we additionally show a
Raman spectrum at a representative position. In con-
trast to the previously shown Raman spectra of flakes
from exfoliated hBN crystals, we do not observe a
single narrow Raman peak. Instead, a broad response
ranging from 1100cm−1 to 1600cm−1 is observed.
This can be related to the amorphous nature of the BN
film, which leads to a strong broadening of the Raman
peak due to the inclusion of nanocrystalline regions
within the BN film [102]. The broadening may also
result from random strain effects [71]. They lead to
an averaging of different bond lengths between the
atoms resulting in a statistical averaging of the Raman
response due to variations in the phonon frequencies.

As the PVD grown BN films will later be used as
a substrate for graphene, we next explore their sur-
face roughness by atomic force microscopy (AFM).
Figure 4(c) displays an AFM image for a small region
of the sample shown in figure 4(a). A root mean
square (RMS) roughness of 0.2nm is extracted from
this map. This low value is in line with RMS values
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of hBN and the 2D semiconductor WSe2, which have
proven to be ideal substrates for graphene [80].

In figure 4(d) we show an optical image of the
CVD grown BN film which was transferred on SiO2.
Due to the wet-transfer process and because multiple
layers of hBN are transferred on top of each other, the
BN film does not have a homogenous thickness. From
XPS measurements we estimate an average thickness
of 3 layers of hBN. The Raman spectrum at a repres-
entative position is shown in figure 4(e) together with
a histogramof the distribution of the FWHM in panel
(f). We observe a well-defined hBN Raman peak at
ωE2g = 1365cm−1 with a FHWM of ΓE2g = 34cm−1.
The large FWHM is in striking contrast to the pre-
viously discussed crystals but comparable to other
BN films shown in literature [103–105]. We attribute
the large FWHM to the wet transfer procedure and
the remaining PMMA residues on the transferred BN
film.

To conclude the pre-characterization of BN crys-
tals and films, we note that there is no common
method which is either sensitive enough or applicable
to all forms of BN, i.e. crystals and films. Especially,
for nanocrystalline or amorphousBN films,which are
recognized as potential substrates for scaled devices,
the usual characterization methods are not feasible.
We therefore proceed with the evaluation of graphene
in contact with BN, by using graphene as a sensitive
detector for the suitability of the underlying BN/hBN
substrate for charge transport.

4. Dry-transfer of graphene encapsulated
in BN

The next step in the benchmarking protocol is to
build van derWaals heterostructures using BNmater-
ial to fully encapsulate graphene. The substrate qual-
ity of BN is then explored by probing the elec-
tronic properties of graphene using both spatially-
resolved Raman spectroscopy and charge transport
measurements.

For the stacking of the heterostructures we start
by exfoliating hBN and graphene flakes onto 90nm
Si/SiO2. The flakes are searched and classified using
a home-built automatic flake detection tool [101].
Suitable flakes with a thickness between 20 and 40 nm
are identified and stacked on top of each other using
standard dry-transfer methods with poly(bisphenol
A carbonate) (PC) film on top of a drop-shaped
polydimethylsiloxane (PDMS) stamping tool [106].
The stacking process is schematically depicted in
figure 5. For the benchmarking of hBN crystals
(APHT and PCF), graphene is picked up using hBN
flakes, which were exfoliated from their respective
bulk crystals while for the evaluation of BN films
the graphene is picked up by exfoliated HPHT-
grown hBN (figures 5(b)–(d)). In the next step, the

Figure 5. Dry transfer of graphene/BN heterostructures. (a)
Schematic representation of the used stamp. A PC film is
placed on a self-assembled PDMS droplet on a glass slide.
The stamp is placed above the silicon wafer which is placed
on a heatable stage. (b) The process starts with heating the
substrate to T= 110 ◦C. (c) The stamp is brought into
contact with the hBN flake and the temperature is lowered
from T= 110 ◦C to T= 80 ◦C. (d) The hBN flake is
picked up at T= 80 ◦C. (e) The hBN flake is used to pick
up the exfoliated graphene flake at T= 80 ◦C. (f)–(g) For
the BN films, the hBN/graphene is placed directly on the
BN film and released from the stamp at T= 180 ◦C to
detach the PC from the PDMS and bond it to the substrate.
(h)–(j) For the full encapsulation in hBN an additional
hBN flake is first picked up (h) and then placed on the final
substrate and heated to T= 180 ◦C (i) to release the PC
from the PDMS and (j) bond it to the substrate.

hBN/graphene half stack is either transferred onto
corresponding hBN crystal flakes (figures 5(h)–(j))
or placed onto the BN films (figures 5(f)–(g)). The
protection of graphene from the top by an hBN
crystal is important to ensure heterostructures of
comparable quality and exclude influences on the
graphene quality and device performance that can
be caused by chemicals or airborne contaminations
[107] during the subsequent processing steps. Optical
microscope images of the finished stacks are shown in
figures 7(a)–(e). The lateral size of the stacks is lim-
ited by the size of the exfoliated hBN and graphene
flakes. Within this project, we characterized in total
over 40 dry-transferred samples to obtain a statistical
evaluation of the various BN substrate and to exclude
sample-to-sample variations.

5. Raman spectroscopy on BN-graphene
heterostructures

5.1. Extraction of strain, strain variations and
doping
We first give an overview on the key concepts of
graphene-based Raman spectroscopy. Figure 6(a)
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Figure 6. Raman spectrum of graphene and influence on
peak positions. (a) Raman spectrum of graphene
encapsulated in hBN. (b) Schematic presentation of the
expected influence of strain, doping and screening on the
positions of the Raman G and 2D peak of graphene.

shows a typical Raman spectrum of graphene
encapsulated in hBN crystals. Three prominent peaks
are typically observed corresponding to the above
analyzed hBN E2g peak and the graphene G and 2D
peak. The G peak in graphene results from out-of-
phase in-plane vibrations of two carbon atoms of
the two sublattices and involves phonons from the
Γ-point, whereas the double resonant 2D peak cor-
responds to a breathing mode, involving phonons
near the K-point [108–110].

A crucial and sensitive quantity for the evaluation
of the electronic properties of graphene is the FWHM
of the 2D peak, which is directly connected to the
extent of nm-scale strain variations within the laser
spot [84] and therefore also contains information on
the roughness of the substrate [80]. As strain vari-
ations locally break the hexagonal symmetry of the
lattice, a vector potential is induced which in turn
leads to an increased probability of backscattering of
electrons in charge transport leading to a reduced
charge carrier mobility [82]. The 2D FWHM is there-
fore the main quantity of interest in our study as it
directly connects the interface quality given by the BN
with the electronic quality of the adjacent graphene
sheet.

The G and 2D peak are both susceptible to strain
as well as doping [83] and the 2D peak position is
additionally influenced by dielectric screening from
the environment [111], which is, however, not relev-
ant in the scope of this study. To separate the effects
of strain and doping from spatially-resolved Raman
maps, the positions of the 2D and G peak are plotted
against each other, as illustrated in figure 6(b). Since
the two peaks shift differently as function of doping
and strain, the slopes of the distributions can be used
to qualitatively evaluate the type of disorder in the
system (strain and/or doping). A distribution paral-
lel to the strain axis has a slope of 2.2 and is connec-
ted to biaxial strain whereas a distribution along the
doping axis has a slope ranging between 0.3 and 0.7
depending on both their charge carrier type and the
substrate [83, 112].

5.2. Results of spatially-resolved Raman
spectroscopy
Raman measurements were performed with the
same setup as for the characterization of the hBN
crystals and films, using a grating of 1200 linesmm−1.
Figures 7(f)–(j) show Raman maps of the graphene
2D linewidth for the regions highlighted with
black dashed rectangles in the optical images in
figures 7(a)–(e) for each BN source, respectively. The
corresponding histograms are shown in figures 7(k)–
(o) of a selected region of interest, highlighted with
a dashed rectangle in the corresponding panel in
figures 7(f)–(j). The color scale is the same for all
maps. Regions of a higher 2D linewidth within a
stack may either result from bubbles (hydrocar-
bons) that are trapped at the interface between
hBN and graphene or may be related to regions
with multilayers. Residual hydrocarbons most likely
originate from tape residues during exfoliation or
from the polymer used for stacking [113–115]. The
latter is a commonly known challenge when using
polymer-based dry-transfer techniques. We observe
the formation of bubbles for all stacks produced in
this study.

Comparison of the contamination-free regions of
the 2D FWHM maps reveals the lowest Γ2D values
for graphene on APHT-hBN (figures 7(f)–(g)), fol-
lowed by PCF-grown crystals (figure 7(h)) and than
the BN films (figures 7(i)–(j)). The corresponding
histograms in figures 7(k)–(o) enable the quantitative
evaluation of the 2D FWHMmaps. The maximum of
the statistical distribution ranges from 16.5cm−1 for
APHT-grown crystals, over 18cm−1 for PCF-grown
crystals to values larger than 20cm−1 for BN films.
We identify the peak position of the 2D linewidth
distribution as a robust and sensitive quantity to
evaluate the interface quality of the underlying BN, in
line with previous works [80, 84]. We conclude that
the degree of strain variations in graphene is lowest
for the APHT hBN crystals, which shows that they
have the highest interface quality (flatness) among the
studied BN.

The respective ω2D vs ωG scatter plots are shown
in figures 7(p)–(t), where the color code corresponds
to the FWHM of the 2D peak. For the stack presen-
ted in the first row of figure 7 we chose a region
with a spatially homogeneous and low 2D FWHM.
The corresponding 2D vs G peak position distribu-
tion shows a strong clustering along the 2.2 strain
axis indicating very small strain variations and neg-
ligible doping. For the sample in the second row, the
distribution with the lowest 2D linewidth (blue data
points) is again mainly distributed along the strain
axis. However, areas with inclusion (bubbles) exhibit
larger 2D linewidths (green, yellow and reddish color)
with a distribution outside the strain axis, which is
probably due to larger doping. The effect of doping on
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Figure 7. Optical microsopce images and Raman spectroscopy of dry-transferred hBN/graphene heterostructures. (a)–(e) Optical
microscope images of one representative stack for each BN source, namely the APHT-hBN from RWTH and GEMaC, the
PCF-hBN from LMI, the PVD grown BN film from CSIC and the transferred CVD hBN from UZH. (f)–(j) Spatially-resolved
Raman map of the 2D FWHM of graphene of the region highlighted as a dashed black rectangle in the optical images in (a)–(e).
(k)–(o) Statistical representation of the 2D FWHM extracted from the region highlighted as a dashed rectangle in the
corresponding Raman maps shown in (f)–(j). (p)–(t) The 2D peak position vs G peak position. Each point is color coded with the
FWHM of the 2D peak. The dashed line corresponds to the expected random strain distribution with a slope of 2.2 (see text),
while the solid line corresponds to the expected doping distribution with a slope of 0.7.

Figure 8. Distributions of the graphene 2D peak FWHM
for all fabricated and evaluated heterostacks, combined in a
single histogram for each BN source.

the peak positions is most clearly seen for the PVD-
grown BN shown in the fourth row of figure 7. The
peak positions show a curved distribution that results
from both strain and doping.

To go beyond the evaluation of the comparison
of representative examples, we plot the graphene 2D
linewidth of high-quality regions of all evaluated
samples in a combined histogram in figure 8. For
the APHT-grown crystals we observe narrow distri-
butions of the graphene 2D linewidth with the max-
imum at 16.5cm−1, demonstrating an excellent and
reproducible interface quality between graphene and
hBN over a number of 20 different heterostructures
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with hBN crystals taken from different batches. The
histogram distribution of the PCF-crystals shows
a broader distribution ranging from 17.5cm−1 to
19cm−1 indicating a larger amount of strain vari-
ations, and when evaluating different stacks, we addi-
tionally observe a larger sample-to sample variation
in the 2D linewidth distribution.

While the analysis of the free exciton lifetime τCL
in figure 2 shows slightly shorter lifetimes for RWTH-
APHT crystals compared to the GEMaC-APHT crys-
tals there are no differences in the amount of nm-
strain variations of encapsulated graphene as inferred
from Raman spectroscopy. In contrast, the broader
and shifted graphene 2D linewidth distribution of
heterostacks fabricated by the PCF crystals seems to
be related to their shorter exciton lifetimes. As the
graphene 2D linewidth is connected to nm-strain
variations caused by the roughness of the substrate
surface, we conclude that the defect concentration in
the PCF-grown crystals is so high that it affects the
electronic properties of graphene. Further, this quant-
ity allows us to compare various substrates independ-
ent on their crystal nature to each other.

6. Processing into Hall bar structures

We next determine the key quantity of interest, the
charge carrier mobility of graphene, and link it to
the Raman 2D linewidths of graphene and the free
exciton lifetimes of the BN substrate. For this pur-
pose, the fabricated heterostructures are patterned
into Hall bar devices and electrically contacted to
perform gate-dependent charge transport measure-
ments. For this study, we established a reproducible
fabrication process yielding a high homogeneity of
the electronic quality of graphene within a device as
well as a high throughput of functioning contacts. For
all devices we applied the same fabrication routine.

A simplified overview of the various processing
steps is shown in figure 9(e). First, the Hall bar
structure is defined by electron beam lithography
(EBL) (step 1). Subsequently, 30nm aluminum (Al)
is deposited using electron beam evaporation with a
rate of 0.1nm s−1 (step 2) and after lift-off we remain
with the final Hall-bar structure protected by the Al
hard mask (step 3). The structure is subsequently
etched using atomic layer etching (Oxford Plasma Pro
100) using Ar/SF6 with a flow rate of 5/20 sccm and
HF power of 50W and a 5 s oxygen etch pulse. The Al
is chemically removed using tetramethylammonium
hydroxide (TMAH) (step 4). The contacts to the Hall
bar are defined in a second EBL step (step 5) and
5nm/70nm of Cr/Au is evaporated, with a rate of
0.2nm s−1 and 0.5nm s−1 (step 6). An optical micro-
scope image of a representative, structured and con-
tacted device is shown in figure 9(b).

At this point, it is important to note that we have
taken particular care to minimize the time between
the individual processing steps. The etching, the sub-
sequent second lithography step and the evaporation
of Cr/Au was performed within the same day. By fab-
ricating many devices, we have clear evidence that the
time window between etching into the Hall bar struc-
ture where we expose the edges of graphene to air and
the deposition of the side contacts to graphene should
be minimized. For all devices, this time window was
below 4h.

6.1. Influence of processing on the electronic
properties of graphene
In this section we discuss the impact of the Hall bar
processing onto themechanical and electronic quality
of the devices by using spatially-resolved Raman spec-
troscopy. In figure 9 we show a representative device
PCF (LMI), with an optical image of the stack in panel
(a) and the final device in panel (b). Figures 9(c)
and (d) depict spatially-resolved Raman maps of the
graphene 2D linewidth of the heterostructure before
and after processing, respectively. The black rect-
angle in figure 9(c) illustrates the region chosen for
the Hall-bar patterning, and only the Raman data
from this region are used for comparison with the
final Hall bar. The respective histogram is shown in
figure 9(f) (green data). A comparison of the two
maps in figures 9(c) and (d) shows: (i) an overall
increases in the Raman 2D FWHM in the center of
the Hall bar, which leads to a shift of the respect-
ive histogram (red data in figure 9(f)) towards higher
wavenumbers and (ii) a strong increase in linewidth
towards the edges of the Hall bar (reddish color in
figure 9(d) that is seen as a tail in the histogram
extending to values above 20 cm−1. This finding
could be linked to mechanical stress that occurs dur-
ing the fabrication steps. The different temperatures
in the fabrication process, e.g. after baking the resist
for lithography or during etching, can lead to stress
due to the different thermal expansion coefficients of
the materials within the stack and the substrate.

Considering the Raman 2D and G peak positions
in figure 9(g), we clearly observe a red shift of the
positions along the 2.2 strain line for the stack after
fabrication. This cloud (red data points) has shif-
ted towards phonon frequencies closer to the point
related to that of ‘pristine’ graphene [83], suggest-
ing that strain release may have occurred during the
device fabrication. We only show one example here,
but this finding is observed inmany different samples,
regardless of the type of BN used. A more detailed
investigation is beyond the scope of this paper and
future works focusing on the monitoring of differ-
ent fabrication steps are necessary to draw clearer
conclusions.
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Figure 9. Fabrication of Hall-bar structures from van der Waals (vdW) heterostructures. (a) Optical microscope image of
hBN/graphene/hBN vdW heterostructure. The black rectangle denotes the area mapped by Raman spectroscopy shown in panel
(c). (b) Optical microscope image of the patterened and contacted Hall bar. (c) Spatially-resolved Raman map of the graphene 2D
FWHM. The black rectangle corresponds to the position where the Hall bar is placed. (d) Spatially-resolved Raman map of the
2D FWHM of the finished Hall bar. (e) Schematic of the process overview for Hall bar structures. (1) Electron beam lithography
to define the Hall bar structure, followed by (2) electron beam evaporation of aluminum and (3) subsequent atomic layer etching.
After chemical etching of the aluminum in TMAH (4) the contacts are defined in a second EBL step (5) and the Hall bar is finally
contacted by Cr/Au evaporation (6). (f) Histogram of the Raman 2D peak FWHM before (green) and after (red) Hall bar
fabrication. (g) Scatter plot of the graphene 2D vs G peak position before and after Hall bar fabrication. The black line shows the
expected distribution for biaxial strain (slope= 2.2) and the grey line for doping (slope= 0.7).

Figure 10. Charge transport measurements on graphene/BN Hall bars. (a) Optical image of a representative Hall bar structure
with a schematical representation of the electrical wiring. (b) Four-terminal resistivity (conductivity) as function of the silicon
back gate voltage. (c)–(g) Extracted Drude mobilities as function of charge carrier density for HPHT-NIMS, APHT-RWTH,
RWTH-GEMaC, PCF-LMI, PVD-CSIC and CVD-UZH (wet-transferred), respectively. Traces of the same color correspond to
multiple regions measured within the same device. Different colors correspond to different devices.
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6.2. Room temperature charge carrier mobilities
The individual Hall bars with the different BN sub-
strates were fabricated in heterostack regions of the
lowest possible and homogeneous graphene Raman
2D FWHM (as an example, see black rectangle in
figure 9(c)). All charge transport measurements
were taken at room temperature under vacuum.
An example of a Hall bar with the measurement
scheme is depicted in figure 10(a). We use an AC
voltage V0 = 1V at a frequency of 77 Hz and a series
resistance of RP = 1MΩ to pass a constant current
of I= 1µA between the source and drain contact.
The four-terminal voltage drop is measured for dif-
ferent regions along the graphene transport chan-
nel, labelled as Vxx in figure 10(a) for the upper
region as an example. This voltage drop converts to
the resistivity (1/conductivity) following ρ= 1/σ =
W/L ·Vxx/I, where L is the distance between
the contacts and W the width of the transport
channel.

Figure 10(b) shows the gate dependent resistiv-
ity and conductivity for an APHT device (red traces
in panel (d)). For all measured regions, the con-
ductivity σ reaches at least 400e2/h at large gate
voltages, i.e. large charge carrier densities, which is
mainly limited by electron–phonon scattering [20].
Importantly, and in contrast to previous studies,
we observe homogeneous transport properties along
the graphene channel and a high yield of function-
ing contacts (larger than 90 %). While the elec-
tronic homogeneity is likely due to the pre-selection
of the regions via Raman mapping, we link the
high throughput of functioning contacts to the
decreased time between the etching (i.e. exposing
of graphene contact areas) and evaporation of the
Cr/Au.

The charge carrier density n is extracted from
Hall effect measurements. It is connected to the gate
voltage by n= α(VG −V0

G), where V0
G is the posi-

tion of the charge neutrality point, i.e. the voltage
of the Dirac peak, and α is the gate lever arm. The
carrier mobilities µ= σ/(ne) of graphene with the
different BN substrates are shown in figures 10(c)–
(h) for each BN source individually. As a reference,
we show transport data for a Hall bar device where we
used HPHT hBN (NIMS) (see figure 10(c)). For each
device, multiple regions were measured. Traces of the
same color are from different regions of the same
device. There are only small variations in transport
characteristics within a single device but also between
different devices fabricated from the same BN source.
This finding further confirms a robust and reliable
processing routine, which was developed as part of
the benchmarking study. For devices built by APHT
hBN we measure the highest charge carrier mobil-
ities exceeding 80000cm2 (Vs)−1 at a charge carrier
density of |n|= 1× 1012 cm−2 (see figures 10(c) and
(d)). These values are fully in line with state of the art

high-mobility graphene devices using HPHT hBN
[20] (see also figure 10(c)) or APHT hBN from other
sources [22–24]. We therefore highlight the viab-
ility of APHT hBN crystals as a true alternative to
HPHT hBN crystals, for high-performance graphene
devices. For the PCF-grown crystals in figure 10(f), we
observe a carrier mobility of up to 30000cm2 (Vs)−1

at |n|= 1× 1012 cm−2. The lower charge carrier
mobility of graphene encapsulated in PCF-grown
hBN, when compared to APHT hBN, is fully con-
sistent with our two previous observations, a shorter
free exciton lifetime and a higher 2D linewidth of
graphene encapsulated in PCF-grown hBN crystals.
The relation between an increase in graphene 2D
linewidth and a decrease in charge carrier mobility is
understood in terms of increased electron backscat-
tering due to the stronger nm-strain variations [82].
For the PVD grown BN film (figure 10(g)) we extract
charge carrier mobilities over 10000cm2 (Vs)−1

at n= 1× 1012 cm−2, while we achieve mobilit-
ies around 4000cm2 (Vs)−1 at n= 1× 1012 cm−2

for the CVD-grown and wet-transferred films
(figure 10(h)).

7. Discussion

In figure 11, we summarize themain results of the BN
benchmarking study: (a) room temperature charge
carriermobility vs carrier density and carriermobilit-
ies at n= 1× 1012 cm−2 vs (b) free exciton lifetime of
hBN, (c) ΓE2g of hBN and (d) graphene 2D linewidth
of all BN substrates. In figure 11(a) we show the
transport traces for the region of highest mobility
for each device shown in figures 10(c)–(h). As men-
tioned above, APHT grown hBN allows for equally
high graphene mobilities as achieved for HPHT-
grown hBN crystals. These hBN sources are of high
relevance for many research groups, who are inter-
ested in high quality hBN crystals for fundamental
research. The PCF-grown crystals, following another
route of hBNcrystal growth, allow formobilities up to
30000cm2 (Vs)−1 at n= 1× 1012 cm−2, demonstrat-
ing the great potential of new synthesis routes for the
production of high quality hBN crystals. One aim of
this synthesis route is to satisfy the increasing demand
of hBN crystals frommany research groups. However,
these approaches to grow high quality hBN crystals
are not scalable, because they cannot be easily com-
binedwith technologically relevant substrates and the
desired thicknesses can only be achieved via mech-
anical exfoliation. Scalable methods for growing BN
are therefore needed to unlock the full potential of
graphene-based electronics in future nanoelectronic
devices.

In this respect, the PVD growth method is
most promising because (i) it allows the growth of
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Figure 11. Summary of the main findings of the BN benchmarking study. (a) Charge carrier mobility as a function of Drude
mobility for the best transport region of each device for every supplier as a function of charge carrier density. The charge carrier
mobility of a reference device fully encapsulated in HPHT-hBN is also shown for reference. Charge carrier mobility at a charge
carrier density of 1× 1012 cm−2 as function of (b) the free exciton lifetime, (c) the averaged FWHM of the E2g Raman peak, and
(d) the averaged graphene Raman 2D linewidth of the Hall bar after fabrication.

tens of nanometer thick films with very low sur-
face roughness and (ii) it can be deposited dir-
ectly onto Si/SiO2 substrates. The large BN thickness
screens disorder from the silicon substrates, while the
deposition on the target substrates prevents the need
for large scale layer transfer. Most importantly, the
PVD-grown BN allows for room temperature carrier
mobilities of graphene exceeding 10000cm2 (Vs)−1

at n= 1× 1012 cm−2. We conclude that the low
temperature PVD growth process of BN on SiO2

is a promising platform for achieving scalable BN
substrates not only for graphene, but also for other 2D
materials.

If we compare the charge carriermobility with the
Raman 2D FWHM we see a clear trend of decreas-
ing mobility with increasing 2D FWHM. This is
in good agreement with the finding that nm-scale
strain variations are the limitation for high charge
carrier mobilities [82] and shows that the graphene
Raman 2D FWHM is a good measure for bench-
marking as used in the ICE TS 62 607-6-6 key control
characteristics [116]. Whereas we do not find a cor-
relation between the FWHM of the hBN Raman peak
and the charge carrier mobility we observe a clear
correlation between the CL lifetime and the mobil-
ity, as shown in figure 11(b). We observe that we
needCL lifetimes of over 1ns to achieve charge carrier
mobilities in the range of 80000cm2 (Vs)−1 at n=
1× 1012 cm−2. For CL lifetimes of 100ps we achieve
charge carriermobilities up to 30000cm2 (Vs)−1. The
interface quality is therefore connected to the hBN
crystal quality, i.e. the number of defects, in a sens-
itive way.

In conclusion, we have presented a comprehens-
ive study of the electronic properties of graphene
on different boron nitride substrates using a newly
developed reproducible processing routine. We have

shown the complete process from boron nitride
synthesis, over its optical characterization, to the
optical and electronic characterization of graphene
after encapsulation and Hall bar fabrication. We
identify the Raman spectrum of BN as a valuable
measure for distinguishing hBN in the high crys-
tallinity limit from BN films, but we also point out
the limitations of the Raman analysis when compar-
ing high-quality hBN crystals. In this respect, time-
resolved cathodoluminescence has a clear advant-
age over Raman spectroscopy when evaluating the
as-grown quality of hBN, as the probing of the
free exciton lifetime is very sensitive to the defects
in hBN. The fabrication of graphene-based hetero-
structures on BN substrates demonstrates the high
sensitivity of graphene to the environment, allowing
graphene to be used as a sensitive detector of the sub-
strate and interface quality. Variations in the qual-
ity of the graphene-BN interface are directly reflec-
ted in a broadening of the graphene Raman 2D
peak. This broadening has a direct effect on the car-
rier mobility, i.e. the mobility is inversely propor-
tional to the peak of the 2D linewidth distribution
of graphene. It is therefore advisable to characterize
the Raman 2D linewidth distribution of the finished
heterostructure prior to any processing. In terms of
benchmarking we find that a CL lifetime larger than
1ns is sufficient for high hBN crystal quality and
high graphene-hBN interface qualities with low nm
strain variations in graphene, which is essential for
fundamental studies on highest mobility graphene-
based devices. For scalable approaches we see that
a graphene Raman 2D linewidth below 22cm−1 is
necessary to achieve charge carrier mobilities over
10000cm2 (Vs)−1. PVD-grown BN films, therefore,
offer a promising platform for scalable high mobility
graphene devices.
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