001034442 001__ 1034442
001034442 005__ 20250203133242.0
001034442 0247_ $$2doi$$a10.1007/s00431-024-05846-3
001034442 0247_ $$2ISSN$$a0340-6199
001034442 0247_ $$2ISSN$$a1432-1076
001034442 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-07208
001034442 0247_ $$2pmid$$a39672974
001034442 0247_ $$2WOS$$aWOS:001379523700001
001034442 037__ $$aFZJ-2024-07208
001034442 082__ $$a610
001034442 1001_ $$0P:(DE-HGF)0$$aKerth, Janna-Lina$$b0$$eCorresponding author
001034442 245__ $$aArtificial intelligence in the care of children and adolescents with chronic diseases: a systematic review
001034442 260__ $$aDordrecht$$bSpringer Science & Business Media B.V.$$c2025
001034442 3367_ $$2DRIVER$$aarticle
001034442 3367_ $$2DataCite$$aOutput Types/Journal article
001034442 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734423289_31226
001034442 3367_ $$2BibTeX$$aARTICLE
001034442 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001034442 3367_ $$00$$2EndNote$$aJournal Article
001034442 520__ $$aThe integration of artificial intelligence (AI) and machine learning (ML) has shown potential for various applications in the medical field, particularly for diagnosing and managing chronic diseases among children and adolescents. This systematic review aims to comprehensively analyze and synthesize research on the use of AI for monitoring, guiding, and assisting pediatric patients with chronic diseases. Five major electronic databases were searched (Medline, Scopus, PsycINFO, ACM, Web of Science), along with manual searches of gray literature, personal archives, and reference lists of relevant papers. All original studies as well as conference abstracts and proceedings, focusing on AI applications for pediatric chronic disease care were included. Thirty-one studies met the inclusion criteria. We extracted AI method used, study design, population, intervention, and main results. Two researchers independently extracted data and resolved discrepancies through discussion. AI applications are diverse, encompassing, e.g., disease classification, outcome prediction, or decision support. AI generally performed well, though most models were tested on retrospective data. AI-based tools have shown promise in mental health analysis, e.g., by using speech sampling or social media data to predict therapy outcomes for various chronic conditions.
001034442 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001034442 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001034442 7001_ $$0P:(DE-HGF)0$$aHagemeister, Maurus$$b1
001034442 7001_ $$0P:(DE-HGF)0$$aBischops, Anne C.$$b2
001034442 7001_ $$0P:(DE-HGF)0$$aReinhart, Lisa$$b3
001034442 7001_ $$0P:(DE-Juel1)177727$$aDukart, Juergen$$b4
001034442 7001_ $$0P:(DE-Juel1)166268$$aHeinrichs, Bert$$b5
001034442 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b6
001034442 7001_ $$0P:(DE-HGF)0$$aMeissner, Thomas$$b7
001034442 773__ $$0PERI:(DE-600)2647723-3$$a10.1007/s00431-024-05846-3$$gVol. 184, no. 1, p. 83$$n1$$p83$$tEuropean journal of pediatrics$$v184$$x0340-6199$$y2025
001034442 8564_ $$uhttps://juser.fz-juelich.de/record/1034442/files/s00431-024-05846-3.pdf$$yOpenAccess
001034442 909CO $$ooai:juser.fz-juelich.de:1034442$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001034442 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Dept. of General Pediatrics, Pediatric Cardiology and Neonatology, Medical Faculty, University Children’s Hospital Düsseldorf, Heinrich Heine University$$b0
001034442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177727$$aForschungszentrum Jülich$$b4$$kFZJ
001034442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166268$$aForschungszentrum Jülich$$b5$$kFZJ
001034442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b6$$kFZJ
001034442 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b6
001034442 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001034442 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001034442 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
001034442 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-26
001034442 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
001034442 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-10-26$$wger
001034442 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001034442 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-01$$wger
001034442 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
001034442 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
001034442 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
001034442 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-01
001034442 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-01
001034442 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-01
001034442 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
001034442 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J PEDIATR : 2022$$d2025-01-01
001034442 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-01
001034442 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-01
001034442 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-01
001034442 920__ $$lyes
001034442 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001034442 980__ $$ajournal
001034442 980__ $$aVDB
001034442 980__ $$aUNRESTRICTED
001034442 980__ $$aI:(DE-Juel1)INM-7-20090406
001034442 9801_ $$aFullTexts