001     1034442
005     20250203133242.0
024 7 _ |a 10.1007/s00431-024-05846-3
|2 doi
024 7 _ |a 0340-6199
|2 ISSN
024 7 _ |a 1432-1076
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-07208
|2 datacite_doi
024 7 _ |a 39672974
|2 pmid
024 7 _ |a WOS:001379523700001
|2 WOS
037 _ _ |a FZJ-2024-07208
082 _ _ |a 610
100 1 _ |a Kerth, Janna-Lina
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Artificial intelligence in the care of children and adolescents with chronic diseases: a systematic review
260 _ _ |a Dordrecht
|c 2025
|b Springer Science & Business Media B.V.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1734423289_31226
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The integration of artificial intelligence (AI) and machine learning (ML) has shown potential for various applications in the medical field, particularly for diagnosing and managing chronic diseases among children and adolescents. This systematic review aims to comprehensively analyze and synthesize research on the use of AI for monitoring, guiding, and assisting pediatric patients with chronic diseases. Five major electronic databases were searched (Medline, Scopus, PsycINFO, ACM, Web of Science), along with manual searches of gray literature, personal archives, and reference lists of relevant papers. All original studies as well as conference abstracts and proceedings, focusing on AI applications for pediatric chronic disease care were included. Thirty-one studies met the inclusion criteria. We extracted AI method used, study design, population, intervention, and main results. Two researchers independently extracted data and resolved discrepancies through discussion. AI applications are diverse, encompassing, e.g., disease classification, outcome prediction, or decision support. AI generally performed well, though most models were tested on retrospective data. AI-based tools have shown promise in mental health analysis, e.g., by using speech sampling or social media data to predict therapy outcomes for various chronic conditions.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hagemeister, Maurus
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bischops, Anne C.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Reinhart, Lisa
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dukart, Juergen
|0 P:(DE-Juel1)177727
|b 4
700 1 _ |a Heinrichs, Bert
|0 P:(DE-Juel1)166268
|b 5
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 6
700 1 _ |a Meissner, Thomas
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1007/s00431-024-05846-3
|g Vol. 184, no. 1, p. 83
|0 PERI:(DE-600)2647723-3
|n 1
|p 83
|t European journal of pediatrics
|v 184
|y 2025
|x 0340-6199
856 4 _ |u https://juser.fz-juelich.de/record/1034442/files/s00431-024-05846-3.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1034442
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Dept. of General Pediatrics, Pediatric Cardiology and Neonatology, Medical Faculty, University Children’s Hospital Düsseldorf, Heinrich Heine University
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)177727
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166268
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-10-26
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-01
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J PEDIATR : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-01
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-01
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-01
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21