001     1034446
005     20241219210859.0
024 7 _ |a 10.25493/29RQ-MSM
|2 doi
037 _ _ |a FZJ-2024-07212
100 1 _ |a Vogt, Brent A.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Probabilistic cytoarchitectonic map of Area p29 (retrosplenial) (v11.0)
260 _ _ |c 2024
|b EBRAINS
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a Dataset
|b dataset
|m dataset
|0 PUB:(DE-HGF)32
|s 1734602422_7060
|2 PUB:(DE-HGF)
336 7 _ |a Chart or Table
|0 26
|2 EndNote
336 7 _ |a Dataset
|2 DataCite
336 7 _ |a DATA_SET
|2 ORCID
336 7 _ |a ResearchData
|2 DINI
520 _ _ |a This dataset contains the distinct probabilistic cytoarchitectonic map of Area p29 (retrosplenial) in the individual, single subject template of the MNI Colin 27 reference space. As part of the Julich-Brain cytoarchitectonic atlas, the area was identified using classical histological criteria and quantitative cytoarchitectonic analysis on cell-body-stained histological sections of 10 human postmortem brains obtained from the body donor program of the University of Düsseldorf. The results of the cytoarchitectonic analysis were then mapped to the reference space, where each voxel was assigned the probability to belong to Area p29 (retrosplenial). The probability map of Area p29 (retrosplenial) is provided in NifTi format for each hemisphere in the reference space. The Julich-Brain atlas relies on a modular, flexible and adaptive framework containing workflows to create the probabilistic brain maps for these structures. Note that methodological improvements and updated probability estimates for new brain structures may in some cases lead to measurable but negligible deviations of existing probability maps, as compared to earlier released datasets. The most probable delineation of Area p29 (retrosplenial) derived from the calculation of a maximum probability map of all currently released Julich-Brain brain structures can be found here: Amunts et al. (2020) [Data set, v2.2] [DOI: 10.25493/TAKY-64D](https://doi.org/10.25493/TAKY-64D)
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
536 _ _ |a EBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)
|0 G:(EU-Grant)101147319
|c 101147319
|f HORIZON-INFRA-2022-SERV-B-01
|x 1
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Neuroscience
|2 Other
700 1 _ |a Mohlberg, Hartmut
|0 P:(DE-Juel1)131660
|b 1
|u fzj
700 1 _ |a Zilles, Karl
|0 P:(DE-Juel1)131714
|b 2
700 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 3
|e Corresponding author
|u fzj
700 1 _ |a Palomero-Gallagher, Nicola
|0 P:(DE-Juel1)131701
|b 4
|u fzj
773 _ _ |a 10.25493/29RQ-MSM
909 C O |o oai:juser.fz-juelich.de:1034446
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131660
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131701
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
914 1 _ |y 2024
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a dataset
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21