001     1034451
005     20241219210859.0
024 7 _ |a 10.34734/FZJ-2024-07217
|2 datacite_doi
037 _ _ |a FZJ-2024-07217
041 _ _ |a English
100 1 _ |a Abubaker, Mohammed
|0 P:(DE-HGF)0
|b 0
111 2 _ |a Traffic and Granular Flow
|g TGF24
|c Lyon
|d 2024-12-02 - 2024-12-05
|w France
245 _ _ |a A Novel Dataset for Detecting Pedestrian Heads in Crowds Using Deep Learning Algorithms
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1734595985_7060
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a The automatic detection of pedestrian heads in crowded environments is crucial for various crowd analysis and management tasks, including crowd counting, density estimation, pedestrian trajectory extraction, and behavior detection. Despite advancements in deep learning algorithms for object detection, existing studies struggle with pedestrian head detection in crowded situations such as railway platforms and event entrances, where risks frequently arise. One main reason for the poor head detection performance is the underrepresentation of such scenarios in existing datasets. These scenarios are particularly challenging due to variations in lighting conditions, viewpoints, occlusions, scale changes, indoor/outdoor environments,and weather conditions.To narrow this gap, we introduce a novel, diverse, and high-resolution dataset of human heads in crowds at Railway Platforms and Event Entrances, named the RPEE-Heads dataset.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Pilotprojekt zur Entwicklung eines palästinensisch-deutschen Forschungs- und Promotionsprogramms 'Palestinian-German Science Bridge' (01DH16027)
|0 G:(BMBF)01DH16027
|c 01DH16027
|x 1
700 1 _ |a Alsadder, Zubayda
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Abdelhaq, Hamed
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Chraibi, Mohcine
|0 P:(DE-Juel1)132077
|b 3
700 1 _ |a Boltes, Maik
|0 P:(DE-Juel1)132064
|b 4
700 1 _ |a Alia, Ahmed
|0 P:(DE-Juel1)185971
|b 5
|e Corresponding author
856 4 _ |u https://juser.fz-juelich.de/record/1034451/files/A%20Novel%20Dataset%20for%20Detecting%20Pedestrian%20Heads%20in%20Crowds.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1034451
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132077
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132064
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)185971
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21