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A R T I C L E I N F O A B S T R A C T 

Editor: B. Grinstein We employ a chiral effective field theory-based approach to connect 𝐷𝐷∗ scattering observables at the physical 
and variable pion masses accessible in lattice QCD simulations. We incorporate all relevant scales associated 
with three-body 𝐷𝐷𝜋 dynamics and the left-hand cut induced by the one-pion exchange for pion masses higher 
than the physical one, as required by analyticity and unitarity. By adjusting the contact interactions to match 
experimental data at the physical pion mass and lattice finite-volume energy levels at 𝑚𝜋 = 280 MeV, we predict 
the trajectory of the 𝑇𝑐𝑐 pole as a function of the pion mass, finding it consistent with the hadronic-molecule 
scenario. In particular, we find that the explicit treatment of the one-pion exchange has a pronounced effect on 
the pole trajectory for 𝑚𝜋 ≳ 230 MeV by pushing it into the complex energy plane.

1. Introduction

The spectroscopy of mesons and baryons containing hidden and open 
heavy flavor quarks has made tremendous progress in recent years. 
Experimental observations have provided evidence for numerous mul-

tiquark exotic states, including tetraquarks for mesons and pentaquarks 
for baryons, with many of them being found in close proximity to cer-

tain hadron-hadron thresholds, as summarized in recent reviews [1–8]. 
However, the structure of these exotic hadrons, determined by the in-

ternal clustering of quarks, is largely unknown and remains the sub-

ject of extensive research. Prominent theoretical scenarios for these 
structures include hadronic molecules, compact multiquark states and 
atom-like hadronic configurations called hadroquarkonia, where a com-

pact heavy quarkonium serves as a core. The size of a molecule made 
out of two hadrons is controlled by the inverse binding momentum 
𝛾 =

√
2𝜇𝐸𝐵 , where 𝐸𝐵 denotes the binding energy and 𝜇 the reduced 

mass of the hadrons. Thus, for very small binding energies, hadronic 
molecules acquire a very large size: The state of interest for this paper 
has 𝐸𝐵 ≈ 300 keV, yielding a spatial extension of the order of 1∕𝛾 ≈ 8
fm. Conversely, compact states are characterized by a size of the order 
of 1∕ΛQCD ≃ 1 fm, where ΛQCD represents the typical scale of the strong 
interactions.

In 2021, the LHCb experiment discovered the first exotic doubly-

charmed narrow resonance, denoted as 𝑇𝑐𝑐(3875)+, whose minimal 
quark composition is 𝑐𝑐�̄�𝑑 [9,10]. This discovery revealed a state with a 
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mass just a few hundred keV below the 𝐷∗+𝐷0 threshold, with a width 
primarily dictated by its strong decay mode to 𝐷𝐷𝜋. Since approxi-

mately 90% of the 𝐷0𝐷0𝜋0 events contain a genuine 𝐷∗ meson [10], 
it is natural to expect (see the discussions in Refs. [11–13]) that the 
width of the 𝑇𝑐𝑐 (3875)+ should be smaller than that of the 𝐷∗ , which 
is only (83.4 ± 1.8) keV [14]. The properties of this state have been in-

vestigated employing low-energy effective field theories (EFT) [15–20] 
and phenomenological models, see, e.g., [7] and references therein. In 
particular, the pole position of the 𝑇𝑐𝑐 (3875)+ and the 𝐷𝐷∗ scattering 
parameters were extracted in Ref. [17] using the leading order chiral 
EFT approximation by performing a coupled-channel analysis of the ex-

perimental line shape in the 𝐷0𝐷0𝜋+ final state. In that work, a special 
attention was paid to the inclusion of three-body cuts, which were found 
to be crucial for the accurate determination of the 𝑇𝑐𝑐 pole position in 
the complex energy plane. We emphasize that for the 𝑇𝑐𝑐 , including the 
one-pion exchange (OPE) to all orders with a proper treatment of its cuts 
is needed for theoretical consistency. To illustrate this, we note that the 
𝐷∗ self-energy induces an imaginary part to the 𝐷∗𝐷 propagator, which 
corresponds to the 𝐷𝐷𝜋 intermediate state going on shell. This on-shell 
intermediate state contains a pair of identical mesons (𝐷𝐷) in isospin 1, 
which has to be in an even partial wave to comply with Bose symmetry. 
Proper symmetrization of the 𝐷𝐷 state, that ensures this, generates a 
one-pion exchange. Moreover, since the 𝐷∗ self-energy is resummed in 
the 𝐷∗𝐷 propagator, consistency with Bose symmetry requires resum-
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ming the OPE as well. For a similar discussion on the Pauli principle 
in the context of two identical nucleons in the three-body intermediate 
state, see Refs. [21–23].

More recently, 𝐷𝐷∗ scattering has also been investigated in lat-

tice QCD employing the Lüscher method [24–27] and the HAL QCD 
approach [28]. In particular, the analysis performed in Ref. [24] by 
utilizing the effective range approximation (ERE) suggests that the 𝑇𝑐𝑐

state is consistent with a virtual state at the pion mass 𝑚𝜋 = 280 MeV. 
However, two significant concerns have been raised in the literature re-

garding this conclusion. First, it was emphasized in Ref. [29] that the 
ERE is only valid for parameterizing the near-threshold energy behav-

ior of the inverse scattering amplitude if there are no nearby left-hand 
cuts (lhc) generated by long-range interactions. The presence of the OPE 
in the 𝐷𝐷∗ scattering potential introduces a left-hand branch point 
at the center-of-mass momentum |𝑝1𝜋lhc| = 126 MeV for the given pion 
mass, thereby significantly restricting the applicability of the effective 
range expansion. The second issue concerns the Lüscher method that is 
widely used for extracting infinite-volume scattering amplitudes from 
finite-volume energy levels calculated on the lattice [30–33], see also 
[34,35] for generalizations to moving two-body systems and [36–40] 
for recent reviews. Recent studies have argued that this method faces 
difficulties in situations involving nearby left-hand cuts [41–44]. Con-

sequently, several extensions of this method or alternative approaches 
have been proposed to address this issue [41,44–46]. In particular, in 
Ref. [44], a solution of the lhc problem was proposed based on the chiral 
EFT approach. Due to the explicit account for the longest-range interac-

tion from the OPE in this approach, finite-volume energy levels can be 
directly calculated as solutions of the eigenvalue problem both below 
and above the left-hand cut. The distinctive feature of Ref. [44] is that 
it not only provided an alternative to the Lüscher method, which is valid 
in the presence of the lhc, but also allowed, for the first time, to take 
into account the left-hand cut effects in the analysis of the actual lattice 
data. Using the lattice energy levels from Ref. [24] and taking into ac-

count the lhc effects, Ref. [44] found the 𝑇𝑐𝑐 to have a 85% probability 
of being a resonance state (based on the scattering amplitude calculated 
at the 1𝜎 confidence level), while the remaining 15% probability corre-

sponds to a scenario with two virtual poles [44]. The single virtual pole 
extracted in Ref. [24] is incompatible with the presence of the left-hand 
cut, as was already shown in Ref. [29].

In this work, we employ the same chiral EFT-based approach to scru-

tinize the analytic structure of the scattering amplitude as a function 
of the pion mass. Given the intricate interplay between the right-hand 
(three-body) and left-hand cuts, which depend sensitively upon the pion 
mass, we incorporate all energy and/or momentum scales relevant for 
this complicated dynamics to predict the pole trajectory of the 𝑇𝑐𝑐 state 
for pion masses between the physical value 𝑚ph

𝜋 and 3𝑚ph
𝜋 . This infor-

mation can serve as a benchmark for future lattice QCD calculations 
and is important for obtaining additional insights into the structure of 
𝑇𝑐𝑐 state [47]. Our analysis also yields predictions for the 𝐷𝐷∗ phase 
shifts at any value of 𝑚𝜋 within the considered range, in spite of the fact 
that the ERE has a very limited range of validity. The lhc also neces-

sitates an improvement of the Weinberg approach to properly describe 
the compositeness of a hadronic state. Besides the fact that the zeros in 
the 𝑇 -matrix emerging from the interplay of the repulsive OPE potential 
and attractive short-range physics may invalidate the original Weinberg 
formalism, as discussed in Refs. [48–50], already the small scale intro-

duced into the system by the nearby lhc calls for a refined formulation 
of the compositeness criterion.

2. Framework

In this work, we use both experimental data [9,10] and lattice energy 
levels [24] to determine the a priori unknown low-energy constants in 
chiral EFT. With these fixed, we predict the 𝐷𝐷∗ scattering amplitude 
at various pion masses. Before discussing the explicit procedure, several 
remarks are in order:

• We focus on observables near the 𝐷𝐷∗ threshold, so we do not 
consider potential coupled-channel effects involving 𝐷∗𝐷∗. In a 
very recent lattice investigation of coupled-channel 𝐷𝐷∗ − 𝐷∗𝐷∗

scattering at 𝑚𝜋 = 391 MeV, a sizeable coupled-channel effect was 
reported [26] within the Lüscher formalism using, however, am-

plitude parameterizations that ignore the left-hand cuts. We briefly 
comment on these results below. However, since no information 
about the coupled-channel dynamics is available from Ref. [24], 
which is used as input for our study, these effects are ignored.

• Our calculations are performed in the isospin limit using the av-

eraged masses 𝑀𝐷(∗) = (𝑀𝐷(∗)0 + 𝑀𝐷(∗)𝑐 )∕2 for the 𝐷(∗)-mesons. 
Additionally, since electromagnetic effects are not yet resolved on 
the lattice, we ignore the radiative decay width of the 𝐷∗, consid-

ering only its strong pionic decay.

• The main goal of this study is to analyze the pion mass dependence 
of 𝐷𝐷∗ scattering observables in the continuum limit. The lattice 
energy levels used here as input are obtained at a single lattice spac-

ing of 𝑎 ≈ 0.086 fm. Previous investigations, such as Ref. [51], found 
the dependence of finite volume energy levels on the lattice spac-

ing in the doubly heavy sector to be moderate for the 𝑢𝑑𝑐𝑐 case. 
Based on these findings, we neglect the lattice spacing dependence 
in our analysis.

The effective potential 𝑉 for 𝐷𝐷∗ scattering is constructed in chiral 
EFT up to (𝑄2), where 𝑄 = 𝑝∕Λ𝑏 with 𝑝 ∼ 𝑚𝜋 being a characteristic 
soft momentum scale and Λ𝑏 referring to the breakdown scale of the 
chiral expansion, and is given by

𝑉 = 𝑉
(0)

OPE
+ 𝑉

(0)
cont + 𝑉

(2)
cont + ... . (1)

Here, we assume that the two-pion exchange contributions are largely 
saturated by the contact terms, see also Refs. [52,53] for related studies 
in the context of the 𝑋(3872).

In analogy to the 𝑁𝑁 system [54,55], it was shown in Ref. [56] that 
the OPE potential in heavy-meson systems is well defined, in the EFT 
sense, only in combination with contact operators. These contact terms 
account for our ignorance of short-range dynamics and have the form 
of a polynomial function in the pion mass and momenta. The isoscalar 
contact potentials contributing to the relevant 3𝑆1

1 partial wave near 
the 𝐷𝐷∗ threshold can be parametrized as

𝑉cont(𝑝, 𝑝′) =
[
𝑐0(𝜉) + 𝑐2(𝜉)(𝑝2 + 𝑝′2)

]
(𝝐 ⋅ 𝝐′ ∗) ,

𝑐0(𝜉) = 𝐶0 +𝐷2(𝜉2 − 1) +(𝜉4, 𝑝4) ,
𝑐2(𝜉) = 𝐶2 +(𝜉2) ,

(2)

where 𝜉 = 𝑚𝜋∕𝑚
ph
𝜋 while 𝒑 (𝒑′) and 𝝐 (𝝐′) denote the center-of-mass 

momentum and polarization of the initial (final) 𝐷∗ meson, respectively. 
The values of the low-energy constants (LECs) in Eq. (2) are determined 
from empirical data at the physical pion mass (𝜉 = 1) as well as from the 
lattice energy levels at certain 𝜉-values away from the physical point, 
as discussed in Sec. 3. In this work, for this purpose, we use the lattice 
QCD data at 𝑚𝜋 = 280 MeV, which corresponds to 𝜉 ≈ 2. The effect of 
higher-order contact terms at (𝑄4) is estimated in Sec. 4.

In the framework of time-ordered-perturbation theory (TOPT), the 
isoscalar OPE potential is given by

𝑉OPE(𝐸,𝒑,𝒑′) = − 𝑔2

8𝑓 2
𝜋

(𝒒 ⋅ 𝝐)(𝒒 ⋅ 𝝐′ ∗)
2𝜔𝜋(𝒒2) 

𝐷𝜋(𝐸,𝒑,𝒑′), (3)

where 𝑓𝜋 is the pion decay constant and 𝑔 is the coupling constant of 
pions with heavy mesons. Furthermore,

1 Here and in what follows, we use the spectroscopic notation 2𝑆+1𝐿𝐽 to in-

dicate a 𝐷𝐷∗ partial wave with total spin 𝑆 , angular momentum 𝐿 and total 
angular momentum equal to 𝐽 .
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𝐷𝜋(𝐸,𝒑,𝒑′) = 𝐷1(𝐸,𝒑,𝒑′) +𝐷2(𝐸,𝒑,𝒑′), (4)

and the two TOPT propagators read

𝐷1(𝐸,𝒑,𝒑′) =
(
2𝑀𝐷 + 𝑝2 + 𝑝′ 2

2𝑀𝐷

+𝜔𝜋(𝒒2) −𝐸 − 𝑖𝜖

)−1
,

𝐷2(𝐸,𝒑,𝒑′) =
(
2𝑀𝐷∗ +

𝑝2 + 𝑝′ 2

2𝑀𝐷∗
+𝜔𝜋(𝒒2) −𝐸 − 𝑖𝜖

)−1
.

Here, 𝐸 is total energy of the system and 𝒒=𝒑+𝒑′. We treat the pion 
relativistically, such that 𝜔𝜋 (𝒒2)=

√
𝑚2

𝜋
+𝒒2, while the 𝐷(∗) mesons are 

nonrelativistic. The resulting potential can be therefore written as

𝑉 (𝐸,𝒑,𝒑′) = 𝑉cont(𝑝, 𝑝′) + 𝑉OPE(𝐸,𝒑,𝒑′). (5)

The partial-wave-projected potentials 𝑉𝛼𝛽 (𝐸,𝑝, 𝑝′) are obtained along 
the lines of Refs. [57,58] as follows,

𝑉𝛼𝛽 (𝐸,𝑝, 𝑝′) = 1 
2𝐽 + 1 ∫

𝑑Ω𝑝

4𝜋
𝑑Ω𝑝′

4𝜋
(6)

× Tr
[
𝑃 †(𝐽𝐿𝑆;𝒏)𝑉 (𝐸,𝒑,𝒑′)𝑃 (𝐽𝐿′𝑆′;𝒏′)

]
,

where the Greek indices run from 1 to 2 accounting for the 3𝑆1 and 3𝐷1
partial waves, respectively, with 𝐿(𝐿′) = 𝑆 or 𝐷; 𝒏 = 𝒑∕𝑝 (𝒏′ = 𝒑

′∕𝑝′), 
and a complete set of relevant properly normalized projection operators 
𝑃 (𝐽𝐿𝑆;𝒏) is given in the Appendix of Ref. [58].

The scattering amplitude is calculated as a solution of the Lippmann-

Schwinger equation

𝑇𝛼𝛽 (𝐸,𝑝, 𝑝′) = 𝑉𝛼𝛽 (𝐸,𝑝, 𝑝′) (7)

+

Λ 

∫
0 

d𝑞 𝑞2

2𝜋2 𝑉𝛼𝛾 (𝐸,𝑝, 𝑞)𝐺(𝐸,𝑞)𝑇𝛾𝛽 (𝐸,𝑞, 𝑝′).

In order to render the integral in (7) well defined, we use a sharp cutoff 
regularization. Specifically, the main results were obtained using Λ =
700 MeV, but for the purpose of testing the cutoff dependence we also 
use Λ= 500 MeV. The 𝐷𝐷∗ propagator is expressed as

𝐺(𝐸,𝑞) =
[
𝑀𝐷∗ +𝑀𝐷 + 𝑞2

2𝜇
−𝐸 − 𝑖 

2
Γ(𝐸,𝑞)

]−1
, (8)

where 𝜇 = 𝑀𝐷𝑀𝐷∗∕(𝑀𝐷 +𝑀𝐷∗ ) is the reduced mass,

Γ(𝐸,𝑞) =
𝑔2𝑀𝐷

8𝜋𝑓 2
𝜋
𝑀𝐷∗

[
Σ(𝑠) − Σ0(𝑠)𝜃(𝑀𝐷 +𝑚𝜋 −𝑀𝐷∗ )

]
is the dynamical width of the 𝐷∗ with

Σ(𝑠) =
⎡⎢⎢⎢⎣
√

𝜆(𝑠,𝑀2
𝐷

,𝑚2
𝜋
)

2
√

𝑠

⎤⎥⎥⎥⎦
3

, (9)

and 𝜆(𝑎, 𝑏, 𝑐) = 𝑎2 + 𝑏2 + 𝑐2 − 2𝑎𝑏−2𝑏𝑐 −2𝑐𝑎 is the Källén triangle func-

tion, and 𝑠 = [𝐸 −𝑀𝐷 − 𝑞2∕(2𝜇)]2. Here

Σ0(𝑠) = Σ(𝑀2
𝐷∗ )

+ 2𝑀𝐷∗

(
𝐸 −𝑀𝐷∗ −𝑀𝐷 − 𝑞2

2𝜇

)
Σ′(𝑀2

𝐷∗ ),

where the first and second terms renormalize the 𝐷∗ mass and wave 
function, respectively, if 𝑀𝐷∗ < 𝑀𝐷 + 𝑚𝜋 . The dependence of the 𝐷-

and 𝐷∗-meson masses on 𝑚𝜋 was explored in Ref. [59] using unitarized 
SU(3) chiral perturbation theory. The tree-level expressions for 𝑀𝐷 and 
𝑀𝐷∗ , derived from the expansion around the physical masses with the 
charm quark mass kept at its physical value, are as follows,

𝑀𝐷(𝜉) = 𝑀
ph
𝐷

⎡⎢⎢⎣1 + ℎ1

(
𝑚
ph
𝜋

𝑀
ph
𝐷

)2

(𝜉2 − 1)
⎤⎥⎥⎦ , (10)

𝑀𝐷∗ (𝜉) = 𝑀
ph
𝐷∗

⎡⎢⎢⎣1 + ℎ1

(
𝑚
ph
𝜋

𝑀
ph
𝐷∗

)2

(𝜉2 − 1)
⎤⎥⎥⎦ , (11)

where ℎ1 ≈ 0.42. The pion mass dependence of the pion decay constant 
𝑓𝜋 and the 𝜋𝐷𝐷∗ coupling constant 𝑔 is considered along the lines of 
Refs. [29,60] — see Sec. 3 of the Supplemental Material in Ref. [29]. 
Note also that the extraction of the coupling constant 𝑔 was recently 
updated in Ref. [29] by making two-dimensional fits of lattice data [60] 
with simultaneously varied 𝑚𝜋 and the lattice spacing. We have verified 
that employing the updated coupling has a small impact, which lies well 
within the theoretical uncertainty of the results discussed in Sec. 4. We 
therefore do not dwell on this any further.

3. Pole position as a function of the pion mass

3.1. LO results

Before discussing the next-to-leading order (NLO) results in the fol-

lowing section, it is worth noting that all pole trajectories for this prob-

lem exhibit several common features, which we can illustrate using the 
leading-order (LO) results. In chiral EFT at LO, there is only one con-

tact term, 𝐶0 (see Eq. (2)) which is adjusted to reproduce the real part 
of the 𝑇𝑐𝑐 pole position, Re𝐸pole = −356 keV, extracted in Ref. [17] (see 
“pionful fit III” in Table II) from a chiral EFT-based analysis of the ex-

perimental data. The imaginary part of the 𝑇𝑐𝑐 pole at the physical pion 
mass is governed by its three-body decay to 𝐷𝐷𝜋 and, therefore, comes 
out as a prediction since the 𝐷∗𝐷𝜋 coupling is known. Then, the 𝑇𝑐𝑐

pole trajectory for pion masses other than the physical one is predicted 
based on the interplay of several scales, primarily associated with the 
OPE, as discussed below.

The analytic structure of the scattering amplitude in the complex 
momentum plane (𝑘-plane) is continuously changing with varying pion 
mass. At the nominal 𝐷∗𝐷 threshold, the OPE has both a real and an 
imaginary part as long as the three-body 𝐷𝐷𝜋 threshold is below the 
𝐷𝐷∗ threshold. This is fulfilled, in particular, for the physical pion 
mass (𝜉 = 1). Defining the on-shell momentum relative to the two-

body threshold by 𝑘, with 𝐸 = 𝑀𝐷 + 𝑀𝐷∗ + 𝑘2∕(2𝜇), and introducing 
Δ𝑀 = 𝑀𝐷∗ −𝑀𝐷 , the three-body branch point can be found by requir-

ing 𝐸rhc3= 𝑀𝐷 +𝑀𝐷∗ + 𝑘2rhc3
∕(2𝜇) = 2𝑀𝐷 +𝑚𝜋 . This leads to

𝑘2rhc3
= 2𝜇(𝑚𝜋 −Δ𝑀). (12)

This relation can also be derived by setting 𝑝 = 𝑝′ = 0 in the propagator 
𝐷1 in Eq. (4), resulting in 𝑘2rhc3 < 0 and |𝑘rhc3 | ≈ 88 MeV at the physical 
pion mass. Even when 𝑝 and 𝑝′ are different from zero, the cut can 
still occur at the given pion mass, if the denominator in 𝐷1 vanishes. 
However, in these cases, it will emerge at 𝑘2 > 𝑘2rhc3

.

When both 𝑝 and 𝑝′ are on shell (𝑝 = 𝑝′ = 𝑘) and 𝑚𝜋>Δ𝑀 , the OPE 
and, consequently, the on-shell 𝐷𝐷∗ partial wave amplitudes, exhibit 
the left-hand cut at imaginary values of the momenta. The lhc branch 
point closest to the threshold is given by [29]

(𝑘1𝜋lhc)
2 ≈ 1

4
[(Δ𝑀)2 −𝑚2

𝜋
]. (13)

This can be derived from 𝐷1 using that 𝜇 ≈ 𝑚𝐷∕2, leading to the conclu-

sion that 𝜔𝜋(4𝑘2) = Δ𝑀 for forward 𝐷𝐷∗ scattering (cos (𝒑 ⋅ 𝒑′) = 1).

The partial-wave projected OPE potential with both initial and final 
𝐷∗𝐷 pair on-shell can exhibit either a lhc or a three-body cut, depending 
on the pion mass, as illustrated in Fig. 1. When the pion mass increases 
from its physical value, the three-body phase space closes rapidly as the 
decay of 𝐷∗ → 𝐷𝜋 becomes kinematically forbidden at 𝜉 = 𝜉0 ≈ 1.03. 
Consequently, the three-body cut in the on-shell partial-wave projected 
OPE potential turns into the lhc.
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Fig. 1. Branch cuts in the on-shell partial-wave projected OPE potential versus the pion mass. Left panel: Re (blue solid lines) and Im (red dashed lines) parts of 
the branch point momentum. Real momenta correspond to a three-body cut, imaginary ones to a lhc. At 𝜉 = 𝜉0 ≈ 1.03, the right-hand cut changes into a left-hand 
cut. Middle and right panel: Schematic behavior of the branch cuts in the complex 𝑘 plane when the pion mass is increased. The direction of change is indicated by 
arrows. The blue points A indicate the branch points of the right-hand cut at some value of 𝜉 ∈ [1,1.03]. The red points B indicate the branch points of the left-hand 
cut at some value of 𝜉 > 1.03.

Fig. 2. Sketch of the locations of various branch cuts and poles in the complex energy plane for the physical pion mass (left panel) and 𝑚𝜋 = 280 MeV (right panel). 
The left-hand cut, the two-body 𝐷∗𝐷 cut, and the three-body 𝐷𝐷𝜋 cut are shown in red, green, and blue, respectively. The black symbols show typical locations for 
the 𝑇 +

𝑐𝑐
poles which show up either as a pair of virtual states (dots) or a resonance (stars) in case for the larger pion mass or as quasi-bound state at the physical pion 

mass. For the two scenarios the poles are located on the second and first Riemann sheet with respect to the 𝐷𝐷∗ cut, respectively.

An alternative view on the singularity structure of the problem can 
be gained by examining the trajectories of the branch points in the com-

plex energy plane of the 𝑇 -matrix, see Eq. (7) and Fig. 2 for illustration. 
Starting at the physical pion mass with 𝜉 = 1 and 𝑚𝜋 < Δ𝑀 , there are 
three branch points in the amplitude near the 𝐷𝐷∗ threshold (see left 
panel): the lowest in energy is the three-body cut starting from the 𝜋𝐷𝐷

threshold, followed by a pair of branch points in the second sheet of the 
complex plane in the propagator 𝐺, related to the on-shell two-body 
𝐷∗𝐷 intermediate state. Here, the 𝜋𝐷𝐷 cut generates the imaginary 
parts of the 𝐷∗𝐷 branch points, related to each other via the Schwarz 
reflection principle. As we increase the pion mass or, equivalently 𝜉, the 
three branch points approach each other. At 𝜉 = 𝜉0 ≈ 1.03 the decay of 
𝐷∗ → 𝐷𝜋 becomes kinematically forbidden and all three branch points 
coincide. If we increase 𝜉 further, the number of branch points stays 
the same, but their character changes (see right panel): the left-hand 
cut from the OPE appears below the 𝐷∗𝐷 threshold followed in energy 
by the 𝐷∗𝐷 branch point, which is now located on the real axis. Even 
higher up is the 𝐷𝐷𝜋 three-body cut. We emphasize that for all pion 
masses, besides the special case when 𝑚𝜋 = Δ𝑀 , the branch point of 
the three-body cut, as per Eq. (12), can only be reached if the incoming 
and the outgoing 𝐷∗𝐷 state in the OPE potential is off shell (as dis-

cussed above, the three-body cut can still occur in the on-shell potential 
for 𝑚𝜋 < Δ𝑀 if the denominator in 𝐷1 vanishes, but only at 𝑘2 > 𝑘2rhc3

, 
and for 𝑚𝜋 =Δ𝑀 the branch points of the on-shell and off-shell poten-

tials coincide at 𝑘2 = 0). While in the off-shell amplitude this condition 
comes naturally from the off-shell potential 𝑉𝛼𝛽 (𝐸,𝑝, 𝑝′) itself, the off-

shell potential also enters the on-shell amplitude through iterations.

Additionally, the lhcs from multi-pion exchanges are also present 
in the amplitude, but are much more distant from the threshold and 
therefore expected to have negligible impact on the process under con-

sideration.

We now investigate the trajectory of the 𝑇 +
𝑐𝑐

pole as 𝜉 is varied, which 
is largely influenced by the non-trivial motion of the branch points de-

scribed in the previous paragraph. The 𝑇 +
𝑐𝑐

pole at the physical pion mass 
can be interpreted as a quasi-bound state – a would be bound state of 

𝐷𝐷∗ if there were no three-body decay to 𝐷𝐷𝜋. When the pion mass 
increases, the 𝑇 +

𝑐𝑐
width decreases accordingly and the corresponding 

pole in the complex momentum plane (𝑘-plane) approaches the imagi-

nary axis, finally turning into a bound state. This is illustrated in Fig. 3
– see the zoomed plot in the left panel. Please note, however, that the 
imaginary part of the quasi-bound state energy is so small that it is in-

distinguishable from zero in the right panel of Fig. 3. The proper bound 
state occurs when the 𝑇 +

𝑐𝑐
pole, located below the 𝐷𝐷∗ threshold, coin-

cides with the three-body threshold. This takes place at 𝜉 = 𝜉′ ≈ 1.027, 
which is just a bit smaller than 𝜉0. Therefore, there is a very narrow 
range of 𝜉0 > 𝜉 > 𝜉′, where the three-body threshold is still below the 
two-body threshold, but the 𝑇 +

𝑐𝑐
is already stable. By further departing 

from the physical point in terms of 𝜉, the bound state on the physical 
Riemann sheet (RS-I) turns into a virtual state on RS-II. The particu-

lar value of 𝜉 when this happens depends on the dynamics, namely on 
whether the LO or NLO potential is employed: at LO of the chiral EFT 
expansion, the transition emerges at 𝜉 ≈ 1.3. A common feature of all 
settings is the appearance of the second (lower-lying) virtual pole, the 
dynamics of which is interrelated with the location of the lhc from the 
OPE. The general pattern is illustrated in Fig. 3 and is as follows: At 
some 𝜉, the second virtual pole occurs from under the lhc branch cut 
and goes along with the branch point until the first (upper) pole comes 
close. Then, both poles collide and the state becomes a resonance. The 
OPE plays a significant role, not only by providing a repulsion, which 
would be absent in a pure contact formulation, but also affecting the 
analytic properties of the 𝐷𝐷∗ scattering amplitude in a very nontriv-

ial way. The right panel of Fig. 3 shows the behavior of the pole in the 
energy plane that corresponds to the 𝑘-plane pole trajectory in the left 
panel. The cusps and the point where 𝐸pole = 0 indicate a change in the 
character of the pole, which transitions from a quasi-bound to bound, 
virtual and finally to a resonance state as 𝜉 increases. The point where 
𝐸pole = 0 corresponds to the transition from RS-I to RS-II. Qualitatively, 
the pole trajectories described here are similar to those discussed, e.g., 
in Refs. [47,61–64], though modified by the effects of dynamical pi-

ons. These pionic effects induce the only hadronic contribution to the 
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Fig. 3. Left panel: Pion mass dependence of the 𝑇𝑐𝑐 pole in the complex 𝑘-plane predicted at LO in chiral EFT. The value of 𝜉 is indicated by color. The second, more 
distant virtual state is also shown, along with its collision point with the 𝑇𝑐𝑐 pole, after which the resonance poles emerge. Right panel: LO trajectory of the 𝑇𝑐𝑐 pole 
in the complex energy plane as a function of 𝜉, corresponding to the left panel. Re 𝐸pole and Im 𝐸pole are shown by solid and dashed lines, respectively. The second, 
more distant state is not shown; only the energy of the pole with Re(𝑘) > 0 is shown after the resonance appears.

imaginary part of the 𝑇𝑐𝑐 pole at the physical point and influence the 
𝜉 dependence of the 𝑇𝑐𝑐 pole as well as the second more distant virtual 
pole.

3.2. NLO results

While the results at LO capture the behavior of the pole trajectory 
qualitatively, in this section, we discuss how the results change when 
the higher-order contact interactions in Eq. (2), 𝐶2 and 𝐷2, are incorpo-

rated. First, we note that the experimental data [9,10] do not allow us 
to fix the momentum-dependent (𝑄2) LEC 𝐶2 — or stated otherwise, 
at the physical point there is a strong correlation between the values of 
𝐶2 and 𝐶0. Accordingly, the EFT-based analysis of Ref. [29] resulted in 
an excellent description of the experimental line shapes using 𝐶2 = 0. 
On the other hand, this momentum-dependent short-range interaction 
was found to be important in Refs. [29,44] for understanding the results 
of Ref. [24] at 𝑚𝜋 = 280 MeV (𝜉 ≈ 2). To extract the unknown parame-

ters of the short-range interactions at (𝑄2) — specifically, 𝐶2 and 𝐷2
in Eq. (2) — we use the phase shifts extracted in [44] from the lattice 
energy levels at 𝜉 ≈ 2 [24]. It is important to emphasize that the LECs ex-

tracted in Ref. [44] cannot be used directly in the current analysis, since 
Ref. [44] approximates the full 𝜋𝐷𝐷 Green function, as per Eq. (4), with 
the static pion propagator. While this approximation is justified for an-

alyzing lattice data at 𝑚𝜋 = 280 MeV, the three-body cut emerging from 
the 𝜋𝐷𝐷 Green function is crucial for maintaining the correct analytic 
structure of the 𝐷𝐷∗ scattering amplitude and thus for providing chiral 
extrapolations from the lattice data to the physical point. Thus, we ad-

just the contact terms to the phase shifts with the main criterion that the 
resulting central curve and its uncertainty band should resemble those 
from Ref. [44]. The results of our best fit, including the 1𝜎 uncertainty 
band, are shown in Fig. 4, along with the original phase shifts from 
Ref. [44], and are in good agreement. However, we note that we do not 
account for possible correlations between the input data points. This 
leads to a more conservative estimate of the propagated uncertainty. To 
propagate the uncertainties from the original dataset into our calcula-

tions, we use the bootstrap procedure — see, e.g., Ref. [65] for details. 
Specifically, we employ the orange band in Fig. 4 from Ref. [44] to ran-

domly generate 1000 datasets, assuming a Gaussian distribution. Each 
of these simulated datasets is individually used to determine the best-fit 
parameters 𝐶2 and 𝐷2. The resulting distribution of {𝐶2,𝐷2} from these 
fits is then propagated to estimate the uncertainty of the results for the 
𝐷𝐷∗ scattering amplitude and the 𝑇𝑐𝑐 pole position. This uncertainty 
is associated with the statistical uncertainty of the finite-volume energy 
levels from Ref. [24].

In Fig. 5, we show the results for the pole position at NLO in chi-

ral EFT. As a general pattern, one finds that the subleading short-range 

Fig. 4. Fit to the 𝐷𝐷∗ scattering phase shifts, which were extracted previously 
in Ref. [44] from FV energy levels, including the lhc from the OPE. Red and 
pink dots denote the real and imaginary parts of 𝑝 cot 𝛿 in the 3𝑆1 partial wave 
from Ref. [44]. Red and blue lines are the results of the best fit for the real 
and imaginary parts obtained in this work; orange and pink bands represent 
the 1𝜎 uncertainty. Cyan dashed line corresponds to 𝑖𝑝 = ±|𝑝| from unitarity. 
𝐸𝐷𝐷∗ = 𝑀𝐷 +𝑀𝐷∗.

interaction provides additional repulsion, causing both the transitions 
from bound to virtual state (when Re 𝐸pole crosses 0) and from vir-

tual state to a resonance to occur at lower values of 𝜉 compared to LO. 
The 𝐷-wave contribution from the OPE is found to play a minor role in 
the pole trajectory, as seen by comparing the solid (pure 𝑆 wave) and 
dashed (with 𝐷 wave included) red lines in Fig. 5. Given the smallness 
of this effect, we neglect the 𝐷 wave components when performing un-

certainty quantification. This especially helps to simplify the bootstrap 
procedure used to estimate statistical uncertainty of the results.

In Fig. 6, we compare our NLO results with the pole trajectory ob-

tained from a pure contact theory using only the contact potential from 
Eq. (2) (see the dashed-dotted line). The LECs for the contact poten-

tial were obtained by reproducing the physical value of the 𝑇𝑐𝑐 pole 
position and the phase shifts of Ref. [24], which were extracted from 
the finite-volume spectra using the Lüscher method and analyzed em-

ploying the ERE. We note that a recent lattice investigation of coupled 
𝐷𝐷∗ −𝐷∗𝐷∗ scattering at 𝑚𝜋 = 391 MeV (𝜉 ≈ 2.85) [26], also using the 
Lüscher method and ignoring the lhc, predicts a virtual state 62 ± 34
MeV below the 𝐷𝐷∗ threshold, fully consistent with the about 75 MeV 
virtual state predicted by our dot-dashed curve. In addition, the vir-

tual state pole obtained by extrapolating the ERE from Ref. [25] to the 
below-threshold region (see the green point) is also in line with the pre-

diction from our contact EFT. On the other hand, it is evident that the 
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Fig. 5. The real (left panel) and imaginary (right panel) parts of the 𝑇𝑐𝑐 pole position at NLO in chiral EFT as a function of the pion mass. The solid red line corresponds 
to the best fit at NLO with the 𝑆-wave OPE potential, while the orange band stands for the 1𝜎 error band estimated using bootstrap. The dashed red line corresponds 
to the best fit at NLO with the full OPE potential, including 𝐷 waves. The inlay highlights the behavior of the pole at lower pion masses, where the transition from 
quasi-bound (region I) to bound (region II), and then to virtual state occurs (region III), as indicated by the arrows. After 𝜉 ≈ 1.68 the 𝑇𝑐𝑐 becomes a resonance state 
and the Im part of the pole occurs in the right panel.

Fig. 6. Comparison of the 𝑇𝑐𝑐 pole trajectory at NLO in chiral EFT with that in a pionless (contact) theory (dot-dashed line). Notation is the same as in Fig. 5. Only 
the real part is shown, as the pole in the contact theory is always real; gray band indicates the statistical uncertainty of the contact EFT calculation propagated from 
fits to the lattice energy levels based on the ERE [24]. The arrow indicates the pion mass (𝜉 ≈ 1.68), after which the pole in the pionful theory becomes a resonance 
state while the pole in the pionless theory remains a virtual state. The blue data point corresponds to a virtual state extracted by the Hadron Spectrum Collaboration 
at 𝑚𝜋 = 391 MeV [26], while the green square corresponds to a virtual state at 𝑚𝜋 ≈ 348.5 MeV, extracted using the ERE parameters from Ref. [25].

additional repulsion from the longest-range OPE potential, not included 
in Refs. [25,26], significantly impacts the results. Unlike the contact 
trajectory, which remains a virtual state with growing pion mass, our 
NLO pole position transforms from a virtual state to a resonance at pion 
masses corresponding to 𝜉 ≈ 1.7.

The behavior of the 𝑇𝑐𝑐 pole trajectory with respect to the pion mass 
predicted in Figs. 3 and 5 is consistent with a molecular nature of the 𝑇𝑐𝑐

state. Indeed, the smooth transition of the pole trajectory from a bound 
state to a virtual state as the light-quark mass changes is a distinguishing 
feature of a molecular structure [47].

4. Theoretical uncertainty and cross checks

4.1. Chiral truncation error

In the previous section, we presented the results for the 𝑇𝑐𝑐 pole tra-

jectory and estimated errors by propagating the statistical uncertainty 
of the lattice data. In this section, we provide an estimate of the theoreti-

cal uncertainty which comes from the truncation of the chiral expansion 
and the cutoff dependence.

The uncertainty associated with the truncation of the chiral expan-

sion can be estimated by introducing the higher-order (𝑄4) terms, not 
explicitly included in the calculations so far, and evaluating their impact 
on the results. The (𝑄4) terms used for the uncertainty quantification 
are

𝑉
(4)

cont = 𝐷4(𝜉2 − 1)(𝑝2 + 𝑝′
2) + �̃�4(𝜉4 − 1), (14)

while the effect of the 𝑚𝜋 -independent (𝑝4) contact term is neglected, 
as this is consistent with available experimental information at 𝑚𝜋 = 𝑚

ph
𝜋

and lattice data at 𝑚𝜋 = 280 MeV. Here, 𝐷4 and �̃�4 can be expressed as

𝐷4 =
𝛼4
𝐹 2

𝜋

(
𝑚

ph
𝜋

Λ2
𝜒

)2

, �̃�4 =
�̃�4
𝐹 2

𝜋

(
𝑚

ph
𝜋

Λ𝜒

)4

, (15)

with Λ𝜒 ≃ 1 GeV being the chiral symmetry breaking scale. Here, 𝛼4
and �̃�4 are dimensionless prefactors expected to be of the order of 1
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Fig. 7. Theoretical uncertainty for the 𝑇𝑐𝑐 pole position. The bands represent the truncation uncertainty of the chiral expansion for the 𝑇𝑐𝑐 pole position at Λ = 700
MeV when the (𝑄4) terms in Eq. (14) are included. The green band corresponds to the variation of the dimensionless constant 𝛼4 in the range [−1,1], while the 
blue band corresponds to the variation of the dimensionless constant �̃�4 in the same range. Red solid and black dashed lines represent the best fits for Λ= 700 MeV 
and Λ= 500 MeV, respectively.

based on naturalness, as discussed analogously in the 𝑁𝑁 case [66]. 
Indeed, applying the same logic to the terms 𝐶2 and 𝐷2 in Eq. (2), we 
can rewrite them in the following form,

𝐶0 =
𝛼0

𝐹 2
𝜋

, 𝐶2 =
𝛼2
𝐹 2

𝜋

1 
Λ2

𝜒

, 𝐷2 =
�̃�2
𝐹 2

𝜋

(
𝑚

ph
𝜋

Λ𝜒

)2

, (16)

where the values of { 𝛼0, 𝛼2, �̃�2} from our best fit to the data are 𝛼0 ≈
−0.12, 𝛼2 ≈ 0.20 and �̃�2 ≈ 0.42, consistent with expectations.

To estimate the impact of the (𝑄4) terms, we allow 𝛼4 and �̃�4 to 
vary from −1 to +1. This range is considered conservative, given that 
the values of {𝛼0, 𝛼2, �̃�2} are smaller. The uncertainty associated with 
the truncation of the chiral expansion is shown in Fig. 7 (see the green 
and blue bands). To obtain these bands, we use the best fit parameters 
for 𝐶0,𝐶2 and 𝐷2 from our NLO results and supplement the calculations 
with the higher-order potential 𝑉 (4)

cont from Eq. (14). No refit of the phase 
shifts at 𝑚𝜋 = 280 MeV was performed, resulting in a more conservative 
estimate. It is reassuring that the spread in the results at 𝑚𝜋 = 280 MeV 
is quite natural, and it appears to be comparable in size to the statistical 
uncertainty from Fig. 5. The resulting uncertainty grows with 𝜉, but it 
remains comparable with the statistical error in Fig. 5.

In Fig. 7, we also illustrate the cutoff dependence of the pole tra-

jectory, by comparing the results of the best fits for two cutoffs: Λ =
700 MeV and Λ= 500 MeV. As expected, this dependence appears very 
mild after the refit, and falls well within the truncation error.

Additionally, we verified that the change in Im𝐸pole of the 𝑇𝑐𝑐 at the 
physical pion mass, due to the inclusion of the contact term 𝐶2, with this 
LEC fixed at 𝑚𝜋 = 280 MeV, is very small after adjusting 𝐶0 to reproduce 
Re𝐸pole, and remains well within the uncertainty estimated in Ref. [17].

Finally, another potential source of uncertainty arises from the tran-

sition between the real world and the isospin limit at the physical pion 
mass. As discussed above, the parameter 𝐶0 was adjusted to reproduce 
the real part of the 𝑇𝑐𝑐 pole position, Re𝐸pole = −356 keV, as extracted 
from the coupled-channel analysis in Ref. [17]. However, in the isospin 
limit, the 𝑇𝑐𝑐 becomes slightly more bound. To estimate the impact of 
this effect on the pole trajectory, we adopt the following strategy: (i) 
Starting from the contact coupled-channel framework of Ref. [17] (see 
fit 1 in Tables I and II), we use the extracted value of 𝐶0 to calculate 
the 𝑇𝑐𝑐 pole in the isospin limit, which gives Re𝐸pole ≈ −940 keV; (ii) 
Relying on the fact that Re𝐸pole at the physical pion mass is largely in-

sensitive to pion dynamics [17], we use this binding energy as input in 

the full pionful framework in the isospin limit, recalculate 𝐶0,2 and find 
that the impact of this effect on the pole trajectory is very minor (just 
slightly larger than the effect of cutoff variation shown in Fig. 7). As 
expected for a more attractive potential, all transitions (quasi-bound to 
bound, to virtual, to resonance) occur at slightly larger pion masses.

4.2. Comparison to other works

Here, we briefly comment on other lattice calculations available in 
the literature and compare them with our results. In Ref. [28], the HAL 
QCD method was utilized to extract the 𝐷𝐷∗ scattering potential at 
the pion mass 𝑚𝜋 = 146.4 MeV, which was then employed to calcu-

late the phase shifts above the 𝐷𝐷∗ threshold. No visible signature 
of the OPE was observed. Employing the ERE, the 𝑇𝑐𝑐 pole was re-

ported to be a virtual state with 𝑘 = (−8 ± 8+3−5)𝑖 MeV corresponding 
to 𝐸pole = −59 +53 +2

−99 −67 keV, where the errors represent statistical and sys-

tematic uncertainties, in order. Extrapolation of the HAL QCD potential 
to the physical pion mass, neglecting three-body and isospin violating 
effects, led to a bound state but with a binding energy substantially 
smaller than observed experimentally.

The pion mass 𝑚𝜋 = 146.4 MeV corresponds to 𝜉 ≈ 1.07, with the 
𝐷𝐷𝜋 threshold above the 𝐷𝐷∗ threshold. Thus the three-body decay 
is already closed but the system experiences the left-hand cut from the 
OPE. The pole in our approach corresponds to a bound state with 𝑘 =
(19 ± 1)𝑖 MeV and 𝐸pole = −179 ± 25 keV. While our pole position is 
different to that of HAL QCD quantitatively, one may still conclude that 
the results are qualitatively consistent, as a small modification in the 
potential is typically sufficient to shift the pole from a bound to a virtual 
state.

To summarize this discussion, the OPE has a significant effect on 
the imaginary part of the pole location of the 𝑇𝑐𝑐 for the physical pion 
mass. This width is primarily due to the hadronic decay of the 𝑇𝑐𝑐

to 𝐷𝐷𝜋, with the strength of the OPE controlled by the observable 
𝐷∗ → 𝐷𝜋 decay. A small increase in the pion mass by about 7% does not 
change the pion coupling significantly, so that the strength of the OPE 

2 Note that we cannot directly use 𝐶0 from the coupled-channel pionful fit 
of [17] in the isospin limit for the following reasons: (i) unlike Du et al., we 
employ a formalism with relativistic pions; (ii) in the full approach with pions, 
𝐶0 is known to exhibit a limit cycle, meaning it can rapidly change from −∞
to +∞ as a function of the cutoff [67,68] while the observables remain cutoff 
independent. Due to these reasons, taking 𝐶0 from one pionful framework and 
applying it in a different one could lead to large, uncontrolled systematic errors. 
This, however, is expected to work well in the contact case.
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at 𝑚𝜋 = 146.4 MeV remains comparable to that at the physical point. On 
the other hand, the effect of the OPE on the real part of the pole is not so 
dramatic for pion masses close to the physical point. Indeed, it follows 
from Fig. 6 that for pion masses 𝑚𝜋 ≲ 230 MeV (𝜉 ≲ 1.7), very precise 
lattice simulations would be required to quantitatively discriminate be-

tween the pure contact and pionful results. However, the impact of the 
OPE for 𝑚𝜋 ≳ 230 MeV is very significant since the repulsion generated 
by the OPE shifts the pole into the complex plane, creating substantial 
differences from contact results.

In Ref. [27], the charm-quark mass dependence of the 𝑇𝑐𝑐 pole posi-

tion was investigated for a pion mass 𝑚𝜋 = 280 MeV and several values 
of the heavy-quark mass. While the phase shifts were extracted from the 
FV spectra using the Lüscher method, ignoring the left-hand cuts, the 𝑇𝑐𝑐

pole position was calculated from fits to the phase shifts in a framework 
involving the OPE. The pion mass dependence of the 𝑇𝑐𝑐 pole position 
was also briefly discussed but very qualitatively, without making quan-

titative predictions for the pole trajectory.

In Ref. [25], elastic 𝐷𝐷∗ scattering in S-wave was investigated at 
𝑚𝜋 ≈ 348.5 MeV. However, the study was limited by using only a single 
lattice volume and having only one data point in the near-threshold 
region. As a result of the ERE fits to the phase shifts obtained using 
the Lüscher method, the effective range parameters were presented – 
the scattering length and the effective range. Using these parameters, 
we extracted the pole which turns out to be a virtual state with the 
energy about −28+4−5 MeV, as shown in Fig. 6 by the green dot. While 
this result ignores the physics related with long-range interactions, it 
appears consistent with our prediction based on contact EFT.

Very recently, a lattice investigation of coupled 𝐷𝐷∗ − 𝐷∗𝐷∗ scat-

tering at 𝑚𝜋 = 391 MeV was presented in Ref. [26], finding a sizable 
coupled-channel effect. Using the Lüscher method and parameteriza-

tions of the coupled-channel amplitudes that ignore the OPE, two states 
were found in the energy plane: a virtual state about 62(34) MeV below 
the 𝐷𝐷∗ threshold and a resonance about (49(35) + 𝑖11(13)∕2) MeV 
below the 𝐷∗𝐷∗ threshold. By employing a contact theory, we can in-

deed obtain a virtual state around 75 MeV below the 𝐷𝐷∗ threshold. 
However, this state transforms into a resonance with a substantially 
different pole position when the lhc effect from the OPE is included. 
Further investigations are needed to investigate the impact of the lhc on 
the coupled-channel transitions and the pole below the 𝐷∗𝐷∗ threshold.

5. Summary and conclusions

A chiral EFT approach is utilized to establish a continuous connec-

tion between the 𝑇𝑐𝑐 pole position at unphysical pion masses from lattice 
simulations and the physical world. The effective potential, extended up 
to next-to-leading order ((𝑄2)), includes three contact terms and the 
longest range one-pion exchange potential that incorporates all relevant 
scales associated with the three-body 𝐷𝐷𝜋 cut and the left-hand cut. A 
proper treatment of these scales is necessary to fulfill analyticity and 
unitarity of the 𝐷𝐷∗ scattering amplitude when the pion mass deviates 
from its physical value. The contact terms are adjusted to reproduce 
the 𝑇𝑐𝑐 pole position at the physical pion mass and lattice finite vol-

ume spectra at 𝑚𝜋 = 280 MeV. This allows us to predict the trajectory 
of the 𝑇𝑐𝑐 pole as a function of the pion mass up to 𝑚𝜋 ∼ 3𝑚ph

𝜋 . To prop-

agate the statistical uncertainty from the lattice data at 𝑚𝜋 = 280 MeV 
to the pole position at different pion masses, the bootstrap method is 
employed. Additionally, the truncation uncertainty of chiral EFT is es-

timated by including two higher-order ((𝑄4)) contact terms based on 
naturalness.

The resulting position of the pole transitions from a quasi-bound to 
a bound, a virtual and a resonance state as the pion mass increases, 
indicating the molecular nature of the 𝑇𝑐𝑐 . Observing the effect of the 
OPE on the pole for pion masses slightly above the physical value is 
challenging and may require very precise lattice simulations. However, 
for 𝑚𝜋 ≳ 230 MeV, the presence of the OPE is evident as the repulsion it 

generates shifts the pole into the complex plane, leading to substantially 
different results from those obtained without pions.
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