Home > Publications database > RPEE-Heads: A Benchmark for Pedestrian Head Detection in Crowd Videos > print |
001 | 1034460 | ||
005 | 20241219210859.0 | ||
024 | 7 | _ | |a 10.34735/PED.2024.2 |2 doi |
037 | _ | _ | |a FZJ-2024-07226 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Abubaker, Mohamad |0 0009-0006-9119-4139 |b 0 |
245 | _ | _ | |a RPEE-Heads: A Benchmark for Pedestrian Head Detection in Crowd Videos |
260 | _ | _ | |a Jülich |c 2024 |b Forschungszentrum Jülich |
336 | 7 | _ | |a MISC |2 BibTeX |
336 | 7 | _ | |a Dataset |b dataset |m dataset |0 PUB:(DE-HGF)32 |s 1734594474_7060 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Chart or Table |0 26 |2 EndNote |
336 | 7 | _ | |a Dataset |2 DataCite |
336 | 7 | _ | |a DATA_SET |2 ORCID |
336 | 7 | _ | |a ResearchData |2 DINI |
520 | _ | _ | |a RPEE-Heads (Railway Platforms and Event Entrances-Heads) is a new benchmark for pedestrian head detection in crowded environments. It focuses on railway platforms and event entrances, where risks frequently arise. The benchmark aims to improve pedestrian head detection at railway platforms and event entrances, helping to develop accurate deep learning models for several crowd safety applications. It includes: 1) A dataset comprising 109913 head annotations across 1886 images, with an average of approximately 56.2 annotated heads per image. 2) An empirical comparative analysis of eight state-of-the-art deep learning algorithms for head detection was conducted across several publicly available image datasets and the newly introduced RPEE-Heads dataset. 3) An empirical study on head size’s impact on detection algorithms’ performance. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a Pilotprojekt zur Entwicklung eines palästinensisch-deutschen Forschungs- und Promotionsprogramms 'Palestinian-German Science Bridge' (01DH16027) |0 G:(BMBF)01DH16027 |c 01DH16027 |x 1 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Alsadder, Zubayda |0 0009-0008-2715-3345 |b 1 |
700 | 1 | _ | |a Abdelhaq, Hamed |0 0000-0003-4803-6689 |b 2 |
700 | 1 | _ | |a Boltes, Maik |0 P:(DE-Juel1)132064 |b 3 |
700 | 1 | _ | |a Alia, Ahmed |0 P:(DE-Juel1)185971 |b 4 |
773 | _ | _ | |a 10.34735/PED.2024.2 |
856 | 4 | _ | |u http://ped.fz-juelich.de/da/2024rpee_heads |
909 | C | O | |o oai:juser.fz-juelich.de:1034460 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)132064 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)185971 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2024 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-7-20180321 |k IAS-7 |l Zivile Sicherheitsforschung |x 0 |
980 | _ | _ | |a dataset |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IAS-7-20180321 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|