| Home > Publications database > Deep texture features for surface-based characterization of fiber architecture in the human hippocampus (v1) > print |
| 001 | 1034464 | ||
| 005 | 20241218210704.0 | ||
| 024 | 7 | _ | |a 10.25493/T1N3-KCX |2 doi |
| 037 | _ | _ | |a FZJ-2024-07230 |
| 100 | 1 | _ | |a Oberstraß, Alexander |0 P:(DE-Juel1)184804 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a Deep texture features for surface-based characterization of fiber architecture in the human hippocampus (v1) |
| 260 | _ | _ | |c 2024 |b EBRAINS |
| 336 | 7 | _ | |a MISC |2 BibTeX |
| 336 | 7 | _ | |a Dataset |b dataset |m dataset |0 PUB:(DE-HGF)32 |s 1734523238_24844 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Chart or Table |0 26 |2 EndNote |
| 336 | 7 | _ | |a Dataset |2 DataCite |
| 336 | 7 | _ | |a DATA_SET |2 ORCID |
| 336 | 7 | _ | |a ResearchData |2 DINI |
| 520 | _ | _ | |a This dataset contains deep texture features characterizing architectonic patterns of the pyramidal layer in the hippocampal cornu Ammonis region and the subicular complex, as captured by three-dimensional polarized light imaging (3D-PLI). The 3D-PLI measurements were obtained from 547 individual brain sections of the right hippocampus of an 87-year-old male. Texture features were extracted from 3D-PLI images using a width-reduced ResNet-50 encoder trained on a 3D-Context Contrastive Learning (CL-3D) objective. The features were aggregated along the full depth of the pyramidal layer and transformed into an unfolded coordinate space using HippUnfold. In addition, we provide projections of the feature vectors onto 52 principal components with largest explained variance. These components reflect the general regional organization and reveal an expected functional rostro-caudal heterogeneity of the pyramidal layer. By transferring features to an unfolded coordinate system using HippUnfold, the data are placed in a canonical reference space, enabling comparisons with other unfolded datasets. Moreover, we provide unfolded surfaces for both the MNI ICBM 152 Nonlinear Asymmetric 2009c and the BigBrain histological space, allowing access to the features within these volumetric reference spaces as well. |
| 536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 0 |
| 536 | _ | _ | |a HIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015) |0 G:(DE-HGF)InterLabs-0015 |c InterLabs-0015 |x 1 |
| 536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 2 |
| 536 | _ | _ | |a EBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319) |0 G:(EU-Grant)101147319 |c 101147319 |f HORIZON-INFRA-2022-SERV-B-01 |x 3 |
| 588 | _ | _ | |a Dataset connected to DataCite |
| 650 | _ | 7 | |a Neuroscience |2 Other |
| 700 | 1 | _ | |a DeKraker, Jordan |b 1 |
| 700 | 1 | _ | |a Palomero-Gallagher, Nicola |0 P:(DE-Juel1)131701 |b 2 |u fzj |
| 700 | 1 | _ | |a Muenzing, Sascha E. A. |b 3 |
| 700 | 1 | _ | |a Evans, Alan C. |b 4 |
| 700 | 1 | _ | |a Axer, Markus |0 P:(DE-Juel1)131632 |b 5 |u fzj |
| 700 | 1 | _ | |a Amunts, Katrin |0 P:(DE-Juel1)131631 |b 6 |u fzj |
| 700 | 1 | _ | |a Dickscheid, Timo |0 P:(DE-Juel1)165746 |b 7 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.25493/T1N3-KCX |
| 909 | C | O | |o oai:juser.fz-juelich.de:1034464 |p openaire |p VDB |p ec_fundedresources |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)184804 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131701 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)131632 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)131631 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)165746 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 0 |
| 914 | 1 | _ | |y 2024 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-1-20090406 |k INM-1 |l Strukturelle und funktionelle Organisation des Gehirns |x 0 |
| 980 | _ | _ | |a dataset |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)INM-1-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|