001     1034486
005     20250717123713.0
024 7 _ |a 10.1039/D4EE01777C
|2 doi
024 7 _ |a 1754-5692
|2 ISSN
024 7 _ |a 1754-5706
|2 ISSN
024 7 _ |a WOS:001272050500001
|2 WOS
037 _ _ |a FZJ-2024-07252
082 _ _ |a 690
100 1 _ |a Huang, Zhongyuan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Insights into the defect-driven heterogeneous structural evolution of Ni-rich layered cathodes in lithium-ion batteries
260 _ _ |a Cambridge
|c 2024
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752748602_5669
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recently, considerable efforts have been made in research and development to improve Ni-rich lithium-ion batteries to meet the demands of vehicles and grid-level large-scale energy storage. The development of next-generation high-performance lithium-ion batteries requires a comprehensive understanding of the underlying electrochemical mechanisms associated with their structural evolution. In this work, advanced operando neutron diffraction and four-dimensional scanning transmission electron microscopy techniques were applied to clarify the structural evolution of electrodes in two distinct full cells with identical LiNi0.8Co0.1Mn0.1O2 cathodes but different anode counterparts. It is found that both cathodes in the two cells exhibit non-intrinsic two-phase-like behavior at the early charge stage, indicating selective Li+ extraction from cathodes. But the heterogeneous evolution of cathodes is inhibited with a graphite–silicon blended anode compared to that with a graphite anode due to differences in the delithiation rate. Moreover, it is revealed that the formation of heterogeneous structures is driven by the distribution of defects including Li/Ni disordering and microcracks, which should be inhibited by assembling an appropriate anode to avoid potential threats to cell performance. The present work unveils the origin of inhomogeneity in Ni-rich lithium-ion batteries and highlights the significance of kinetics control in electrodes for batteries with higher capacity and longer life.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Chen, Ziwei
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Yang, Maolin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Chu, Mihai
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Li, Zenan
|b 4
700 1 _ |a Deng, Sihao
|b 5
700 1 _ |a He, Lunhua
|0 0000-0002-0531-2148
|b 6
700 1 _ |a Jin, Lei
|0 P:(DE-Juel1)145711
|b 7
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 8
700 1 _ |a Wang, Rui
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Wang, Jun
|b 10
700 1 _ |a Yang, Tingting
|b 11
700 1 _ |a Xiao, Yinguo
|0 P:(DE-Juel1)131047
|b 12
773 _ _ |a 10.1039/D4EE01777C
|g Vol. 17, no. 16, p. 5876 - 5891
|0 PERI:(DE-600)2439879-2
|n 16
|p 5876 - 5891
|t Energy & environmental science
|v 17
|y 2024
|x 1754-5692
856 4 _ |u https://juser.fz-juelich.de/record/1034486/files/Unbenannte%20Anlage%2000041.pdf
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:1034486
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)145711
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 2
914 1 _ |y 2024
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21