001034516 001__ 1034516
001034516 005__ 20250312202213.0
001034516 0247_ $$2doi$$a10.1109/OJCAS.2024.3466395
001034516 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-07279
001034516 0247_ $$2WOS$$aWOS:001381324400003
001034516 037__ $$aFZJ-2024-07279
001034516 041__ $$aEnglish
001034516 082__ $$a004
001034516 1001_ $$0P:(DE-Juel1)177765$$aCabrera-Galicia, Alfonso R.$$b0$$eCorresponding author
001034516 245__ $$aVoltage Reference and Voltage Regulator for the Cryogenic Performance Evaluation of the 22nm FDSOI Technology
001034516 260__ $$aNew York, NY$$bIEEE$$c2024
001034516 3367_ $$2DRIVER$$aarticle
001034516 3367_ $$2DataCite$$aOutput Types/Journal article
001034516 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734684430_26302
001034516 3367_ $$2BibTeX$$aARTICLE
001034516 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001034516 3367_ $$00$$2EndNote$$aJournal Article
001034516 520__ $$aThis paper presents the design and cryogenic electrical characterization of a voltage reference and a linear voltage regulator at temperatures between 6 K and 300 K. Both circuits are employed as test vehicles for the experimental performance evaluation of the 22 nm FDSOI MOS technology when used as platform for the development of cryogenic analog systems, whose role is relevant in Quantum Computing (QC) applications. Additionally, we report the impact that MOS transistor cryogenic phenomena have over these circuits and propose to take advantage of some of those phenomena in analog circuit design. In particular, we focus on the cryogenic threshold voltage (Vth) saturation, the transconductance (gm) increase and the low frequency (LF) excess noise. Our experimental results indicate that the cryogenic Vth saturation and the gm increase can be used as circuit design tools, while the LF excess noise is a performance handicap for cryogenic analog circuits.
001034516 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001034516 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001034516 7001_ $$0P:(DE-Juel1)176328$$aAshok, Arun$$b1
001034516 7001_ $$0P:(DE-Juel1)171680$$aVliex, Patrick$$b2
001034516 7001_ $$0P:(DE-Juel1)156521$$aKruth, Andre$$b3
001034516 7001_ $$0P:(DE-Juel1)145837$$aZambanini, André$$b4
001034516 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b5
001034516 773__ $$0PERI:(DE-600)3012070-6$$a10.1109/OJCAS.2024.3466395$$gVol. 5, p. 377 - 386$$p377 - 386$$tIEEE open journal of circuits and systems$$v5$$x2644-1225$$y2024
001034516 8564_ $$uhttps://juser.fz-juelich.de/record/1034516/files/Voltage_Reference_and_Voltage_Regulator_for_the_Cryogenic_Performance_Evaluation_of_the_22nm_FDSOI_Technology.pdf$$yOpenAccess
001034516 8767_ $$d2025-03-12$$eHybrid-OA$$jPublish and Read$$zToken?
001034516 909CO $$ooai:juser.fz-juelich.de:1034516$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire$$pdnbdelivery
001034516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177765$$aForschungszentrum Jülich$$b0$$kFZJ
001034516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176328$$aForschungszentrum Jülich$$b1$$kFZJ
001034516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171680$$aForschungszentrum Jülich$$b2$$kFZJ
001034516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156521$$aForschungszentrum Jülich$$b3$$kFZJ
001034516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145837$$aForschungszentrum Jülich$$b4$$kFZJ
001034516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b5$$kFZJ
001034516 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001034516 9141_ $$y2024
001034516 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001034516 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-19
001034516 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001034516 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-19
001034516 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE OPEN J CIRCUITS : 2022$$d2024-12-18
001034516 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001034516 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001034516 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-03T10:39:05Z
001034516 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-03T10:39:05Z
001034516 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-03T10:39:05Z
001034516 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001034516 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-18
001034516 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001034516 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
001034516 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001034516 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001034516 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001034516 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001034516 920__ $$lyes
001034516 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
001034516 9801_ $$aFullTexts
001034516 980__ $$ajournal
001034516 980__ $$aVDB
001034516 980__ $$aUNRESTRICTED
001034516 980__ $$aI:(DE-Juel1)ZEA-2-20090406
001034516 980__ $$aAPC
001034516 981__ $$aI:(DE-Juel1)PGI-4-20110106