001034519 001__ 1034519
001034519 005__ 20241218210705.0
001034519 0247_ $$2doi$$a10.25493/D8NF-B83
001034519 037__ $$aFZJ-2024-07282
001034519 1001_ $$0P:(DE-Juel1)173031$$aZhao, Ling$$b0$$ufzj
001034519 245__ $$aRegional and laminar distribution of silver stained cell bodies in the rat brain (v2)
001034519 260__ $$bEBRAINS$$c2024
001034519 3367_ $$2BibTeX$$aMISC
001034519 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1734524680_24844
001034519 3367_ $$026$$2EndNote$$aChart or Table
001034519 3367_ $$2DataCite$$aDataset
001034519 3367_ $$2ORCID$$aDATA_SET
001034519 3367_ $$2DINI$$aResearchData
001034519 520__ $$aClassical mapping studies relied on the analysis of histologically processed sections from formalin-fixed brains for the identification of borders between cortical areas or of the boundaries of subcortical nuclei. Differences in the regional and laminar distribution patterns of neurotransmitter receptors are known to complement and extend the insights into the structural organization of the brain, which are provided by cytoarchitectonic observations alone. Since the method of quantitative in vitro receptor autoradiography requires processing of unfixed, shock frozen brains, we here present a modification of a silver cell body histological staining which can be applied to cryosections neighbouring those destined to labelling of receptors. The histological staining resembles a Nissl staining, but yields a higher contrast between cell bodies and neuropil, and can also be used for quantitative approaches to cytoarchitectonic mapping. The present dataset provides high-resolution digitized images of coronal sections through the rat brain that were processed for the visualization of cell bodies, and which complement a series processed for the visualization of 19 different receptor binding sites from multiple neurotransmitter systems. We also provide information about image data registration to the Waxholm Sprague Dawley rat brain atlas.
001034519 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001034519 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
001034519 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
001034519 536__ $$0G:(EU-Grant)101147319$$aEBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)$$c101147319$$fHORIZON-INFRA-2022-SERV-B-01$$x3
001034519 588__ $$aDataset connected to DataCite
001034519 650_7 $$2Other$$aNeuroscience
001034519 7001_ $$aZilles, Karl$$b1
001034519 7001_ $$0P:(DE-Juel1)131701$$aPalomero-Gallagher, Nicola$$b2$$eCorresponding author$$ufzj
001034519 7001_ $$0P:(DE-HGF)0$$aPuchades, Maja A.$$b3$$eCorresponding author
001034519 773__ $$a10.25493/D8NF-B83
001034519 909CO $$ooai:juser.fz-juelich.de:1034519$$popenaire$$pVDB$$pec_fundedresources
001034519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173031$$aForschungszentrum Jülich$$b0$$kFZJ
001034519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131701$$aForschungszentrum Jülich$$b2$$kFZJ
001034519 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001034519 9141_ $$y2024
001034519 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
001034519 980__ $$adataset
001034519 980__ $$aVDB
001034519 980__ $$aI:(DE-Juel1)INM-1-20090406
001034519 980__ $$aUNRESTRICTED