001034542 001__ 1034542
001034542 005__ 20250203133233.0
001034542 0247_ $$2doi$$a10.1103/PRXEnergy.3.043004
001034542 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-07305
001034542 037__ $$aFZJ-2024-07305
001034542 082__ $$a530
001034542 1001_ $$0P:(DE-Juel1)200120$$aHartmann, Carsten$$b0$$ufzj
001034542 245__ $$aSynchronized States of Power Grids and Oscillator Networks by Convex Optimization
001034542 260__ $$aCollege Park, MD$$bAmerican Physical Society$$c2024
001034542 3367_ $$2DRIVER$$aarticle
001034542 3367_ $$2DataCite$$aOutput Types/Journal article
001034542 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734441823_6700
001034542 3367_ $$2BibTeX$$aARTICLE
001034542 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001034542 3367_ $$00$$2EndNote$$aJournal Article
001034542 520__ $$aSynchronization is essential for the operation of ac power systems: all generators in the power grid must rotate with fixed relative phases to enable a steady flow of electric power. Understanding the conditions for and the limitations of synchronization is of utmost practical importance. In this article, we propose a novel approach to computing and analyzing the stable stationary states of a power grid or a network of Kuramoto oscillators in terms of a convex optimization problem. This approach allows us to systematically compute all stable states where the phase difference across an edge does not exceed 
001034542 536__ $$0G:(DE-HGF)POF4-1122$$a1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)$$cPOF4-112$$fPOF IV$$x0
001034542 536__ $$0G:(GEPRIS)491111487$$aDFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x1
001034542 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001034542 7001_ $$0P:(DE-Juel1)184784$$aBöttcher, Philipp C.$$b1
001034542 7001_ $$aGross, David$$b2
001034542 7001_ $$0P:(DE-Juel1)162277$$aWitthaut, Dirk$$b3$$eCorresponding author$$ufzj
001034542 773__ $$0PERI:(DE-600)3105425-0$$a10.1103/PRXEnergy.3.043004$$gVol. 3, no. 4, p. 043004$$n4$$p043004$$tPRX energy$$v3$$y2024
001034542 8564_ $$uhttps://juser.fz-juelich.de/record/1034542/files/PRXEnergy.3.043004.pdf$$yOpenAccess
001034542 909CO $$ooai:juser.fz-juelich.de:1034542$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001034542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200120$$aForschungszentrum Jülich$$b0$$kFZJ
001034542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184784$$aForschungszentrum Jülich$$b1$$kFZJ
001034542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162277$$aForschungszentrum Jülich$$b3$$kFZJ
001034542 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1122$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
001034542 9141_ $$y2024
001034542 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001034542 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001034542 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-09-25T13:19:03Z
001034542 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-09-25T13:19:03Z
001034542 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-09-25T13:19:03Z
001034542 920__ $$lno
001034542 9201_ $$0I:(DE-Juel1)ICE-1-20170217$$kICE-1$$lModellierung von Energiesystemen$$x0
001034542 980__ $$ajournal
001034542 980__ $$aVDB
001034542 980__ $$aUNRESTRICTED
001034542 980__ $$aI:(DE-Juel1)ICE-1-20170217
001034542 9801_ $$aFullTexts