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Synchronization is essential for the operation of ac power systems: all generators in the power grid must
rotate with fixed relative phases to enable a steady flow of electric power. Understanding the conditions
for and the limitations of synchronization is of utmost practical importance. In this article, we propose a
novel approach to computing and analyzing the stable stationary states of a power grid or a network of
Kuramoto oscillators in terms of a convex optimization problem. This approach allows us to systematically
compute all stable states where the phase difference across an edge does not exceed /2. Furthermore, the
optimization formulation allows us to rigorously establish certain properties of synchronized states and to
bound the error in the widely used linear power flow approximation.
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I. INTRODUCTION

A reliable supply of electricity is vital for our society.
The operation of the electric power system relies on a sta-
ble, synchronized state of the grid: all generators operate at
the same frequency close to the reference frequency of 50
or 60 Hz [1]. The strict phase locking enables a steady flow
of electric power over long distances [2]. Violations of
synchronization can occur after failures, disrupting power
flows and eventually resulting in widespread power out-
ages (see, e.g., Ref. [3]). Remarkably, similar problems
occur in various systems studied in statistical physics.
The Kuramoto model describes the dynamics of coupled
limit-cycle oscillators [4—6] and bears strong similarities
to models of coupled generators [7].

Because of their utmost importance, synchronization
and stability are essential topics in various disciplines [8].
A central question is whether a given network supports
a stable, fully synchronous state. Clearly, a strong cou-
pling fosters synchronization, while a high power load
impedes synchronization—but a comprehensive, rigorous
answer to this question is still lacking. For general net-
works, accurate sufficient conditions were developed in

*Contact author: c.hartmann@fz-juelich.de
TContact author: d.witthaut@fz-juelich.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOL

2768-5608/24/3(4)/043004(21)

043004-1

Ref. [1] and sharpened in Ref. [9], while the role of the
network topology was explored in Ref. [10]. For dense net-
works, a Lyapunov function was introduced in Ref. [11]
that allows us to establish conditions for local and global
stability. For an earlier review of direct methods based on
Lyapunov theory, see Ref. [12]. A master stability func-
tion approach was introduced in Ref. [13], reducing the
problem of synchronization stability to a simple spectral
condition. Moreover, it has been realized that sparse net-
works can be multistable, i.e., they support more than one
stable synchronized state [14]. Again, we are left with the
question of when these states exist [15,16]. Another impor-
tant question is how vulnerable a given synchronous state
is to perturbations [17—19].

In this article, we propose an alternative approach to
the synchronization problem in lossless networks by map-
ping the fixed-point equations to a convex optimization
problem. In the case of potential multistability, each syn-
chronous state is associated with an individual convex
problem. This reformulation allows us to systematically
compute all synchronized states or to refute their exis-
tence. Similar results were obtained by Jafarpour et al.
[20], including an upper bound for the number of stable
synchronized states. Here, we adopt a different perspec-
tive and thus provide further insights into the analytic and
geometric properties of synchronized states. For instance,
we provide an alternative view of the linear power flow or
dc approximation widely used in power engineering [21].
The formulation as an optimization problem allows us to
derive rigorous bounds on the error emerging from the
linearization.
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This article is organized as follows. We first review
essential models for power grid synchronization as well as
the Kuramoto model in Sec. II. The mathematical back-
ground and important prior results on the subject are
summarized in Sec. III. The main result—the optimiza-
tion approach—is formulated in Sec. IV. The relation to
the linear or dc power flow equations is analyzed in Sec. V.
Geometric aspects of the power flow optimization problem
are discussed in Sec. VI. We close with a summary and an
outlook for future research in Sec. VII.

II. STATIONARY STATES IN POWER GRIDS AND
OSCILLATOR NETWORKS

In this section, we review models for the dynamics of
electric power grids and coupled limit-cycle oscillators. In
all cases, the stationary state is described by a set of non-
linear algebraic equations, which is the central objective of
this article.

A. The swing equation and the classical model

Synchronous generators traditionally form the backbone
of electric power generation. The state of the nth machine
is characterized by the mechanical and electric phase angle
0, (1), with a frame of reference rotating at the nominal fre-
quency of the grid. The phase angle evolves according to
the swing equation [12,21]

M6, + D6, = p™" —p¢, €))]
where p™°h(¢) is the mechanical input power provided to
the generator, pfll(t) is the power delivered to the grid, M,
is an inertia constant, and D, is a damping constant.

Furthermore, a model for the load nodes is needed to
close the equations of motion [2]. One classical approach
assumes load nodes to be fully passive and describes
them as constant impedances to the ground. These nodes
can be eliminated from the network equations, a process
commonly referred to as “Kron reduction” [22,23]. The
resulting model includes only generator nodes. If Ohmic
losses are neglected, the electric power exchanged with the
grid can be written as

Pe0) = ApsT 4 Y K sin(6,(1) — 0,,(0),

with effective connectivity KT and effective power injec-
tion Apc™ accounting for the eliminated nodes. The sta-
tionary states of the grid are thus given by the nonlinear
algebraic equations

p;"’f = Z K,ff,f sin(6, — 6,,) for all generator nodes n, (2)

m

with pef = pmeeh _ Apeff Notably, the coupling matrix
KT now describes an effective network, not the physical
power transmission grid. This matrix is typically full, i.e.,
all entries are nonzero [22].

We note that the coupling function in Eq. (2) is strictly
sinusoidal only if Ohmic losses are neglected. The pres-
ence of losses introduces phase lags such that the coupling
function reads sin(6, — 8,, — Yum) [23]. Numerical studies
of the role of the impact of these phase lags were presented
in Refs. [24,25]. Theoretical results on multistability were
obtained in Refs. [26-28].

B. The structure-preserving model

A different approach that conserves the network struc-
ture was suggested by Bergen and Hill [29]. The starting
point is the observation that the real power drawn from
the grid by a load node » typically increases with the fre-
quency. Linearizing around the nominal frequency, we can
thus write the load as

demand __
" =

p’(liemand,() 4 Dn én ) (3)

For a consistent description, we need the power injected
__,,demand

into the grid, which is simply given by p¢! = —p4
Then we can write the evolution equation for all nodes as

Mnén +Dnén =P;11n _P,fl: (4)

with M, =0 and p" = —pdemand0 for Joad nodes and
pin = pmeh for generator nodes. If Ohmic losses are
neglected, the real power flow between two arbitrary nodes
n and m is given by

nm Sin(gn - em) (5)

Hence, the equations of motion read

Pnom =

Mnén + Dnen == p,],n - ZKnm Sin(en - em)’ (6)

and the stationary states are given by the nonlinear alge-
braic equations

pr = ZK”’" sin(, — 6,,) for all nodes n. (7)

m

We emphasize that this model includes all nodes (buses)
and all edges (branches) of the network. If Ohmic losses
are neglected, the coupling constants K,,,, are proportional
to the inverse of the reactance X, ! for a transmission line
(n,m) and K,,,, = 0 if no such line exists. Hence, the model
conserves the structure of the actual power grid, which is
sparse, and we may interpret K,,,, as a weighted adjacency

matrix.
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C. The Kuramoto model

The Kuramoto model describes the dynamics of coupled
limit-cycle oscillators with applications in various scien-
tific disciplines [4—6]. The similarity to models of power
grid synchronization was pointed out by Filatrella et al. [7].

In the Kuramoto model, the position of an oscillator n
along the limit cycle is encoded in a phase variable 6,(¢)
that evolves according to the equations of motion

do ~
—r =+ Y K sin@y — 6,),
m=1

where @” denotes the natural frequency of the oscillator
n, Kym = Kun > 0 1s a coupling constant, and N denotes
the number of oscillators in the network. The Kuramoto-
Sakaguchi model extends the original model to include a
phase lag in the coupling function [30], similar to the effect
of Ohmic losses in the classical or structure-preserving
model.

Traditionally, research on the Kuramoto model has
focused on large systems (N — oco0) and the transition
from incoherence (all oscillators rotate incoherently with
6, ~ ") to partial synchronization (a subset of oscilla-
tors lock their frequencies 6,). An excellent introduction to
this direction of research is given in Ref. [31].

More recently, finite systems and their fixed points
have received increased attention. The fixed points are
determined by the set of equations

N
o = ZKM sin(@, — 6,,) foralln € {1,...,N},

m=1

which is equivalent to Eqgs. (2) and (7) if we identify w®
with p,. Two lines of mathematical research deserve to
be mentioned: First, several authors have exploited the
equivalence to flow networks [1,15,16,26,32]. Second,
the fixed-point equation can be complexified to remove
the sine [33,34].

D. Stability of fixed points

For all of the models described above, one can show
that a stationary state is stable if and only if the Laplacian
matrix L with elements

Lo {—Knm cos(6, — 6,,) forn #m,

> Kucos(, —0) n=m

has only positive eigenvalues except for a trivial zero
eigenvalue corresponding to the eigenvector (1,1,...,1)T
[2,35]. A sufficient condition for stability is that

cos(@, —6,,) >0 )]

for all edges (n,m) in the network. Stationary states that
violate this condition are typically, but not always, unstable

[35]. In the following, we focus on the stationary states that
satisfy the condition in Eq. (8) for all edges and refer to
them as “normal” states or solutions.

E. The linear power flow or dc approximation

In power transmission grids, the phase difference 6, —
0,, along a transmission line (n,m) is typically small.
Hence, it is often appropriate to linearize the sine in the
expression for the real power flow. The steady state of a
lossless power grid is then determined by the linear set of
equations

DPn = ZKnm (gn - em) . (9)

This approximation is referred to as the “linear power
flow approximation” or the “dc approximation” because
the resulting equations are mathematically equivalent to
Kirchhoff’s equations for dc electric circuits. The valid-
ity of the linear power flow approximation was studied
numerically in Refs. [36,37].

1. MATHEMATICAL BACKGROUND

In this section, we turn to the mathematical analysis of
the equations

Pn = ZK”’" sin(6, — 6,,) for all nodes n (10)

that describe the stationary state of a power grid or a
set of Kuramoto oscillators. These are referred to as the
“real power flow equations” in the following to distinguish
from linear power flow or the load-flow equations, which
also include the reactive power [2]. We start with general
aspects of (linear) flow networks before we move to the
nonlinear real power flow.

A. Flow networks and algebraic graph theory

We introduce some useful notation and review some
important results from the literature. Consider a network
with N vertices or nodes and M transmission lines or
edges. Nodes are labeledasn = 1,..., N, and the node set
is denoted as *U. Throughout this article, we assume that
the network is connected. Edges are labeled either by their
endpoints (n, m) or consecutively ase = 1,..., M, and the
set of edges is denoted as &. To keep track of the direction
of power flows, we fix an orientation for each edge. That
is, if the line e = (n, m) is oriented from # to m, then a pos-
itive flow points from » to m and a negative flow points
from m to n. To keep track of the structure of the topology
of the grid and the orientation, we define the node-edge
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incidence matrix E € RY>*™ with components [38]

1 if line e starts at node n,
E,. = { —1 (ifline e ends at node n, (11)
0 otherwise.

The edges’ transmission capacities K, = K, are summa-
rized in a diagonal matrix K = diag(K7, ..., Ky).

A node 7 is characterized by the power injection p, or
its natural frequency. All power injections are summarized
in the vector p = (p1,...,pn) ", where the superscript T
denotes the transpose of a vector or matrix. As we are deal-
ing with lossless power grids, we assume that ) p, =0
from now on. Furthermore, we define the vector of nodal
phase angles @ = (0y,...,60y) . The real power flow of an
edge e is denoted as f;, and all flows are summarized in the
vector f = (f1,....fu) .

For lossless power grids, the real power flows have to
satisfy the continuity equation or Kirchhoff’s current law
(KCL)

N
Pn=) fum forallne{l,....N}. (12)

m=1

This set of equations can also be written in a vectorial
form as

p =Ef. (13)

The problem admits a straightforward solution if we
impose the linear power flow or dc approximation. The
flows now read

ﬁn’m) = Knm (9}1 - Qm)a
f =KE'e.
Substituting the last equation into KCL, we obtain
p=EKE"0 =L, (14)

where we have introduced the Laplacian matrix L € RV
with components [38]

SV Ky forn=m,
_Knm
0 otherwise.

Lym = if n # m and n, m are adjacent, (15)

Equation (14) is linear and can thus be solved for 6 in a
straightforward way:

0 =L,
f =KE'Lp,

where the superscript + denotes the Moore-Penrose
pseudoinverse.

We note that the equations above still include a gauge
freedom: if we shift all phases 6, by a constant, then the
power flows will not change. This is reflected in the fact
that the Laplacian matrix of a connected network has rank
N — 1. A typical choice in applications is to fix the phase
of one distinguished slack node as 6, = 0 and remove
this node from the set of equations (14). Removing the
respective row and column from L, we obtain a grounded
Laplacian matrix.

B. Cycle flows and Helmholtz decomposition

Before we proceed with the real power flow, we pro-
vide some further results on network flows. We recall that
we assume that the network is connected throughout this
article.

We first note that KCL (13) is underdetermined such that
the general solution can be written as

£ =145,

where £ is a special solution and f© denotes an arbi-
trary solution of the associated homogeneous equation, i.e.,
a vector from the kernel of the node-edge incidence matrix
E. The vectors f © correspond to cycle flows: the power
balance Ef © vanishes everywhere, implying that no real
power flows in or out of the network. We can fix a basis
for the kernel by choosing M — N + 1 independent fun-
damental cycles and encode this basis in the edge-cycle
incidence matrix C € R¥*M=N+D with components

1 if edge e belongs to cycle 8,
Cp = §—1 ifthe reverse edge e belongs to cycle B,
0 otherwise,

(16)

such that EC = 0. An important example is given by plane
networks, i.e., networks that are drawn in the plane with-
out any edge crossing. Here, one can choose the faces or
plaquettes of the graph as fundamental cycles. After fixing
a basis, we can write any cycle flow vector as

9 =ce,

where £ = (£1,...,€y_n11) 1s a vector of cycle or loop
flow amplitudes. We note that this decomposition proves
to be useful in various linear power flow problems [39,40].

Similarly to the Helmholtz decomposition in vector
analysis, a flow f can be decomposed into a cycle or
source-free component f© € ker (E) and a directed or
irrotational component f ¥ as we make precise in the
following lemma. We assume that the flow f is energy
conserving, i.e., the sum of nodal outflows and inflows
vanishes, ) (Ef), = 0. A more detailed account of the
topic can be found in Ref. [9].
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Lemma 1. Any energy-conserving flow vector can be
decomposed as

f=r2+r0, (17)

where f© e ker(E) is a pure cycle flow and @ e
ker (C"K~") by application of the projections
Ny =KE'L'E,

(18)
l-[cycle =1 — Ig.

The projectors are orthogonal with respect to the inner
product

M
€0k =) EK'C.. (19)

e=1

Proof. We first show that the two matrices are projec-
tions and span the entire space:

(1) The map M g; is a projection; that is,

N3, =KE'L'EKE'L'E
N— —
=L
=KE'L'E = Ng,.

Here we use the fact that the Moore-Penrose pseu-
doinverse is a weak inverse in the sense that it
satisfies LYLLT = L.

(2) The map Iy is a projection; that is,

07, = (1 — Mg)* =1 — 2Mg; + 3,
=1- 1-Idir = Hcycle'
(3) Finally, it is easy to see that
l-[cyc]e + Mg = 1.

Second, it is easy to see that the projections are orthogonal
with respect to the inner product (19),

(&, M)k = £ ETLYEL = (g, $)i, (20)

where we note that E" LTE is real symmetric.
Finally, we show that I has the desired proper-
ties:

(1) For a pure cycle flow £ © € ker (E), we have

Hcyclef () :f(c).

That is, the projector Iy leaves any cycle flow
invariant as desired.

(2) For an arbitrary flow vector f, we have

Elyuef =E(1—KE'LE)f

_ _ T r+
= Ef — EKE' LYEf.
=L

Multiplying this by L™ from the left, we get

LYENeyaef = LYEf — LYLLYEf
=LY Ef —Ef)=L"0=0.

Hence, we have found that ETloef € ker(L™).
As we assume that the network is connected, the
kernel of L' is given by the linear subspace {c -
(1,...,DTc € R}. We thus have

ENgyeef =c-(1,..., 1T

for some c¢. On the other hand, by demand-
ing that the flow is energy conserving, we have
> (EMyaef ), = 0. This is fulfilled only if ¢ = 0;
that is,

Ellyef =0.

We conclude that the projected flow Ilcycief 1is
indeed a cycle flow as it is in the kernel of E.

C. Resistance distance

A common metric in graph theory is the resistance
distance or effective resistance [41]. It is defined via an
analogy to dc electric circuits, with every edge a replaced
with an Ohmic resistor. In this article, we assume that the
conductance of an edge a is given by the coupling strength
K,, i.e., the resistance is K ! The resistance distance $2,,,
between two nodes n and m is then defined as the voltage
drop between n and m divided by the total current between
n and m. In the context of power grids, resistance dis-
tances provide essential information about the robustness
of synchronized states [19].

To compute €2,,,, we consider a unit current injected at
node 7 and withdrawn at node m:

lim = Wn — Wy,

where w, is the nth standard basis vector; that is,
(Wn)1 = 8-
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The nodal voltages are then given by the vector u =
L™, such that we obtain

T
Qnm = "nmu

= (w, — wm)TLJr(wn — Wp).

If the nodes n and m are connected by an edge a = (n,m),
then we have w, — w,, = Ew, and thus

Q,=w E"LTEw,. (21)

Inserting 1 = K~ 'K, and recalling the definition of the
projectors [Eq. (18)], we get

Q, = w;rKil(ﬂ - Hcycle)wa
= KJI (1 - (Hcycle)aa) .

We note that the quantity 0 < (Ilcycle)ae < 1 is intimately
connected to the connectivity of the endpoint of the edge
a; it vanishes if the edge a is a bridge. Rigorous bounds
for the quantity 1 — (Ilcycle)aq in terms of the network
topology were derived in Propositions 1 and 2 in Ref. [42].

D. Algebraic formulation and multistability of the real
power flow equations

We now turn back to the real power flow equation (10).
This problem is harder to tackle than the linear power flow
due to the nonlinearity introduced by the sine function. In
particular, the flows are now given by

f(n,m) = Knm Sin(en - em)a

22
f:Ksin(ET0), (@)

where the sine function is taken elementwise. In general,
the equations admit multiple solutions such that it is a pri-
ori unclear how and to which solution a numerical solver
will converge. To systematically compute all solutions,
one can proceed in two steps [16]. First, we compute all

solution candidates; that is, all solutions of KCL (13). As
described before, the general solution can be written as

f =f(0) +f(c),

where £ © is an arbitrary cycle flow.

Now that we have a set of solution candidates, we have
to select the actual solutions of the real power equations
(10) from this set. Consider an edge e = (m, n). Inverting
Eq. (22), we can recover the difference of the nodal phase

angles at nodes m and n by

6, — 6,, = arcsin (f—e) or
K

e

6, — 6, = m — arcsin (f—e)
K.

modulo 2. The first option leads to normal fixed points of
Eq. (10) that are guaranteed to be stable. The second option
typically (but not always) yields unstable solutions; hence,
they will be discarded from now on. Insertion of the cycle
flow decomposition f = f ¥ 4+ C¢ then yields

0) + M_—N+1 Ce ¢
6, — 6,, = arcsin <fe 2’3[;1 p 5) .

(23)

Trying to compute all phase angles typically results in a
problem, as we cannot satisfy this relation simultaneously
for all edges in the grid. Only for discrete values of the
loop flow amplitudes £ do we get a consistent solution. It
has been shown that this is the case if the condition

M (0)+ M—N+1 Ce ¢
C,q arcsin fe L= i =2mz, (24)
K.
e=1

with z, € Z is satisfied for all fundamental cycles o =
I,...,M — N + 1 [16,32]. The interpretation of this con-
dition is straightforward: If we add up all the differences
6, — 6,, around a cycle, the sum must equal zero or an inte-
ger multiple of 27. Notably, if this condition is satisfied for
the fundamental cycles, it is satisfied for all cycles.

The quantities z, are referred to as “winding num-
bers,” and we summarize them in the winding vector
z2=1(z1,... ,ZM,NH)T. These winding numbers are par-
ticularly useful to characterize the solutions of the real
power flow equations as they are unique (see Theorem 4.1
in Ref. [20]); that is, each normal solution corresponds
to one unique value of the winding vector z € ZM~N+1,
Moreover, the number of possible winding vectors is finite.
From Eq. (24) we see that solutions can be found only if

number of edges in cycle «

|Za| S Na >

(25)

where )V, denotes the number of edges in the cycle o. Gen-
eralizations of this approach to power grids with Ohmic
losses have been proposed in Refs. [26,27].

A summary of the symbols and variables used in this
article is provided in Table I to improve readability.

IV. REAL POWER FLOW FROM OPTIMIZATION

In this section, we introduce a convex optimiza-
tion—based formulation of the nonlinear real power flow
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TABLE 1. List of symbols and variables. Vectors are written
as boldface lowercase Roman letters and matrices are written as
boldface uppercase Roman letters. Calligraphic letters are used
to denote objective and Lagrangian functions, while Gothic-type
letters denote sets and graphs.

Symbol or variable Definition

e,a,b Indices of lines or edges

o, B, Indices of (fundamental) cycles

Cep Entry of the edge-cycle incidence matrix

C Edge-cycle incidence matrix

¢ Set of all lines or edges in the grid

Entry of the node-edge incidence matrix

Node-edge incidence matrix

Real power flow on line e

Objective function

Vector of all real-power flows

Graph or network

Coupling strength of a line e (proportional
to the inverse of the reactance X, )

Diagonal matrices of coupling constants

Indices of nodes

Laplacian matrix

Lagrange function

Loop flow amplitude on the cycle 8

Vector of all loop flow amplitudes

Real power injection at node n

Vector of all real power injections

Voltage phase angle at node n

Set of all nodes or vertices in the grid

NGNS

57
S

geIT SonN

equations

Pn = Z K, sin(6, — 6,,) for all m € 0. (26)

mey

We demonstrate that this approach allows us to compute
all normal solutions, and we discuss several approximation
schemes. Notably, our approach focuses on the lines and
cycles of the grid instead of the nodes.

A. Solutions by convex optimization

We consider the optimization problem

n}in Fre(f) (27)
subjectto —K, <f, <K, foralle € &, (28)
Pn=)_Enf.foralln eV (29)

with the objective function

Fre(f) =) _ fearcsin (2 ) JK2 =12 =K. (30)

ec€ ¢

We note that the objective function is a sum over the edges
in the network without any interaction terms. Hence, the
edge flows f, are coupled only via the equality constraint.
This particular form simplifies the analysis of the objective
function and allows us to derive the following lemma.

Lemma 2. The objective function Fgp(f') is strictly
convex for K, < f, < K,. Hence, the optimization problem
(27) either is infeasible or has a unique solution.

Proof. The strict convexity of the objective function is
shown by our computing its Hesse matrix. We find that the
Hesse matrix V> Fgp is diagonal, with all diagonal entries
being strictly positive:

3Fre  [(K2—f27V2 fora=b,
af.of, |0 a#b.

Hence, the objective function is strictly convex.

The feasible space is the intersection of a polytope
[defined by Eq. (28)] and an affine space [defined by
Eq. (29)] and, therefore, convex. We conclude that the
optimization problem either is infeasible or has a unique
solution. |

Theorem 1. If the optimization problem (27) is primar-
ily feasible and the solution satisfies

Ifel < K, foralle € €,

then the solution coincides with a normal solution of
the real power flow equations (26) where the phases 6,
correspond to the Lagrangian multipliers of the problem.

Proof. We solve the optimization problem by introduc-
ing the Lagrangian function

LGE) = Fro(f) + Y 1elfe — K + D v~ — Ko)

ec¢ ec€

+ZM@—Z%Q.

ne’y ec¢

The optimization problem satisfies the Slater condition;
hence, every optimum fulfills the Karush-Kuhn-Tucker
conditions:

(1) Stationarity with respect to f;:

oL 3
3_fe = arcsin (IJ;_e) 4+ (e — Ve) — Xn:)‘”E”e =0

for all edges e € €.
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(2) Primal feasibility:

— K, <f, <K,foralle € €,
Pn= ) Euf. foralln e V.

(3) Dual feasibility:

e >0, v, >0foralle e €.

(4) Complementary slackness:

Ue(fo — K.) =0, v (—f. —K,) =0foralle € €.
By assumption we have |f;| < K. such that the comple-
mentary slackness condition yields @, = v, = 0 for all
edges e € €. The stationarity condition with respect to the
variables f, then reads

arcsin (f—e) = ZE,,J,,
K, -
& foe=K,sin (Z Enekn) ,
n

which we substitute into the equality constraint

Pm = ZEmeKe sin (Z Ene)‘n> .
n

ec€

Now we switch our notation and label the edges by their
respective endpoints. Using the structure of the node-edge
incidence matrix, we can recast the last equation into the
form

Pm = ZKnm sin ()‘n - )\m) .
ney

This coincides with the real power flow equations (26) if
we identify X, and 6,,. [ |

Before we proceed, we briefly comment on the assump-
tions underlying Theorem 1. Throughout this article, we
restrict ourselves to normal fixed points, i.e., fixed points
that satisfy 16, —0,| < w/2 and are guaranteed to be
dynamically stable. The proposed framework can be partly
generalized to describe fixed points violating this condi-
tion.

To be more precise, we consider a stationary state with
|6, — 6,,] > /2 for a subset of edges (n,m) € €_. For
these edges, we can recover the phases from the real power
flow £, using the second option in Eq. (23). For all remain-
ing edges, we assume that |6, — 6,,] < /2 and we define

¢, = E\¢E_. One can then show that this fixed point is a
critical point of the function

Folf )= ) Felf)+ D afe— Folfe)

ec¢ ecE_

on the affine subset defined by Ef = p, where we have
defined the shorthand

Fe(fe) = foarcsin (2—6) + K2 —f2.

e

However, these critical points are typically saddle points,
not minima.

B. Multistability

Theorem 1 provides a systematical approach to the real
power flow equations and the stationary states of oscilla-
tor networks. The optimization problem (27) has either a
unique solution or no solution at all. However, we know
that the Kuramoto model is generally multistable, i.e., it
can have multiple stable fixed points. Can we get them all
by convex optimization?

As stressed above, we restrict ourselves to normal-
operation fixed points for the time being. The following
analysis is based on the cycle decomposition reviewed in
Sec. III and the results in Ref. [20]. We have shown that all
solutions of the real power flow equations can be obtained
from the general solution of KCL

f=ro+ce

where f @ denotes a special solution of KCL—for
instance, the one that is obtained from solving the opti-
mization problem (27). Then the cycle flow amplitudes £
must satisfy the conditions

Z Cp arcsin (%) = 2mzg 3D

for all fundamental cycles 8. Notably, the winding vec-
tor z = (z1,...,2zZy—n+1) 18 unique for every fixed point,
as discussed above. Hence, we can actually try to define a
specific convex optimization problem for a given z, whose
unique solution then reproduces the condition (31). Indeed,
this is possible as we show now.

Consider the optimization problem

mlin F.(&)
subjectto  — K, < £, @ + Z Ceplg < K. foralle € €

B
(32)
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with the objective function

Fo@) =) [K2= (D +) " Coplp)* — K,

ec¢ B
© 43, Copt
+ Z L9+ Z Ceplp | arcsin (fe %ﬂ b ﬂ)
ec¢ B ¢
— Y 2mzpty. (33)
B

Lemma 3. The optimization problem (32) either is
infeasible or has a unique solution.

Proof. The feasible space is the intersection of a poly-
tope and an affine space and, therefore, convex (or empty).
The objective function is strictly convex. To prove this
statement, we compute the Hesse matrix

dF, L0+ 3, Cept
L ZCea arcsin (f Z‘p LA 27z,

3Ly K.
PIF, CeaCep

Wby K2~ (20 + X, Copl)?

Converting this result to a matrix form, we find that the
Hesse matrix reads

1
V2F, = C'diag C.

\/Ke2 -0+ 2 Ceply)?

(34)

We see that the Hesse matrix is positive definite on the
interior of the feasible set where

O 4> Coplp| < Ko
5

whereas it becomes singular on the boundary. We conclude
that the optimization problem either is infeasible or has a
unique solution. |

Theorem 2. If the optimization problem (32) is primar-
ily feasible and the solution satisfies

£, © +Zceﬂeﬂ| <K, foralle € &,
B

then the solution coincides with a normal solution of the
real power flow equations (26) with the winding vector z =

(2155 ZM—N+1)-

Proof. We solve the optimization problem by introduc-
ing the Lagrangian function

LO=F,0+> pe L0+ Ceplp— K.

ec€ B

+ ) v

ec¢

_fe(O) _Zceﬁzﬁ - K,
B

The optimization problem satisfies the Slater condition;
hence, every optimum fulfills the Karush-Kuhn-Tucker
conditions:

(1) Stationarity with respect to £,:

0
0= £ = 27wz,
04,
SO+, Coplp
C@O{ i
+ Xe: |:arcsm ( K,
+ (/fLe - Ve)i|

for all fundamental cycles f.
(2) Primal feasibility:

—K. <, O+ Coply < Ke.
B
(3) Dual feasibility:
Ue >0, v, >0foralle € €.

(4) Complementary slackness:

Me fe(O) + Z Ceﬂeﬂ —-K. | =0,
B

Ve —fe(o) - Z Ceplp —K. | =0foralle € €.
B

By assumption we have |, + 3", Ceplp| < K, for all
e € ¢ such that the complementary slackness condition
yields p, = v, = 0 for all edges e € €. The stationarity
condition with respect to the variables ¢, then reads

M-N+1
U (RO Copt
E C,q arcsin

e=1 Ke

Hence, the solution of the optimization problem satisfies
the two conditions for the normal solution of the real power

) =27z, (35)
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flow equations given in Sec. III. First, it satisfies KCL
by construction. Second, the stationarity condition (35)
coincides with the cycle condition (24). ]

We close this section with three remarks on the impli-
cations of the two theorems established above. First, the
optimization problem (27) yields a solution with winding
vector z = 0 (or no suitable solution at all). To see this, we
use this solution as the reference £ ¥ in the optimization
problem (32) with z = 0. Then the minimizer is simply
given by £ = 0. Hence, the solution f* =f© + Ct =
£ © has the winding number z = 0. Normal solutions with
z = 0 are by far the most important ones in practice—all
other ones correspond to rather exotic states with loop
flows; see Ref. [43] for a discussion.

Second, we emphasize that Theorem 2 provides a sys-
tematic approach to compute all normal solutions of the
real power flow equations (26). More precisely, we can find
the following scenarios:

(1) Given the network and the real power injections p,
the optimization problems may be infeasible. That
is, there is no solution of KCL Ef = p that satisfies
the line limits |f,| < K,. In this case, the grid sim-
ply does not have enough capacity to transmit the
power from generators to consumers. Whether this
is the case can be determined in a systematic way by
graph-theoretic methods; see Appendix A.

(2) If there is a solution f© of KCL satisfying the
line limits, then the optimization problem (32) has
a unique solution for each winding vector z. As
the winding vector is unique, we can hence sys-
tematically compute the respective solution and also
decide whether it exists at all by distinguishing three
cases:

(a) If the solution is in the interior of the feasible
set (i.e., |fo| < K, for all lines e), then we have
found the correct solution for the given z.

(b) If the solution lies on the boundary of the fea-
sible space (i.e., |[f.| = K, for at least one line
e), then generally, no solution with the given
winding vector z exists.

(c) In a special case, we may find a solution with
|fe] = K. where the respective Karush-Kuhn-
Tucker multiplier (u. or v.) vanishes too. Then
we have found a valid solution of the real power
flow equations. This case typically corresponds
to a bifurcation point, where the solution will
vanish on the variation of a system parameter.

A different algorithm based on a contraction map-
ping was proposed in Ref. [20].

(3) To systematically compute all possible solutions,
one further needs information about the set of

possible winding vectors z. A comprehensive char-
acterization of the possible winding vectors is given
in Ref. [20], including an upper bound on the
number of possible vectors. Scaling arguments for
the number of possible vectors were presented in
Ref. [16].

Finally, we remark that the suggested procedure to com-
pute all normal solutions may still be computationally
hard, depending on the topology of the network. For every
fundamental cycle «, the number of allowed values z,
is finite according to Eq. (25). The number of allowed
winding vectors z is thus also finite, but it can grow
exponentially with the number of cycles.

V. THE LINEAR POWER FLOW
APPROXIMATION

The linear power flow or dc approximation is widely
used in practical approximations. Here, one simply lin-
earizes the sine function in Eq. (26) and obtains a system
of linear equations

= Z Ky (6, — 6,,) for all m € U (36)
mesy

that is easily solved for the nodal phase angles as discussed
in Sec. III. Here we discuss how this approximation relates
to our optimization approach and how this approximation
may be refined.

A. The linear power flow as an optimization problem

We first note that the linear power flow equations can
also be obtained from a convex optimization problem:

min - Fiin(f) G7)

subjectto  p, = ZEnefe foralln € Y

with the objective function

fiin(f)

Z (38)

ec¢

To see this, we introduce the Lagrangian

£(f) = fiin(f) + Z)\n (pn - ZEnefe> .

ney ec¢
The stationarity condition with respect to f, then reads

oL fo
7K ZAEe_O
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for all edges e € €. Substituting this result into the equality
constraints, we obtain

= EncK. (Z Eneha )

ec¢

Switching our notation and labeling the edges by their
respective endpoints, we can recast this equation into the
form

Pm = ZKnm ()\n - )\m) .

ne’y

This coincides with the linear power flow equations (36) if
we identify A, and 6,.

Now, how does the optimization problem (37) relate to
the previous problem (27)? By straightforward computa-
tion, one can show that the objective function JFy, is the
leading-order Taylor expansion of the original objective
function Frp around the “empty grid” f = 0:

Fre(f) = Fin(f) + OF).

Furthermore, the optimization problem (37) neglects the
inequality constraints, i.e., the line limits.

B. Improving on the linear power flow approximation

The previous insights provide a method to improve the
linear power flow approximation. In the first step we lin-
earize the objective function Frp(f) around f = 0 and
obtain the linear power flow £ 1", Alternatively, we can
linearize the objective F,—¢(£) around £ = 0. We can
repeat this idea and do another Taylor expansion, but this
time around the previous approximate solution f i),

Let us evaluate this idea. The linear power flow provid-
ing the starting point is given by

gl — [ty
A . (39)
f(hn) — KETO(I‘“).

For a given edge e = (n,m), we further define 6" =
g{im — gUin) Fyrthermore, we use the Taylor expansion of

the objective function. Writing f, = £, + Af,, we obtain

f. arcsin (f ) +\/K2—fe2—

K.
A f(lin) ‘
:fe(lm) arcsin( eK ) + \/IW_K(;
e

f(lin)

—i—arcsin(‘K )Afe—l- AL+ OALD).

¢ K2 _fe(lm)z

Now we can rewrite the optimization problem (32). If we
set Af = C¢, the objective function reads

(lin) -
Z £,0 arcsin <fK ) + VK2 — 1,02

ecC

(]m)
- K.+ Z arcsin < ) Z Ceplp

ec¢

fz=0 (Z)

2

+ Z +O3).

/K2 fe(lm)Z Z ¢ 'BK'B

We ignore the inequality constraints for the time being, as
in the linear power flow approximation, and discard the
higher-order terms. The minimizer is then found by our
requiring the objective to be stationary:

OF,—
0= f zgarcsin<

’ (lin) )
K C(:‘O(
e

1
+ Z ———————CoyCoply.
2 (lin)2
B\ KZ—fe

Using the explicit forms of the gradient and the Hessian for
the optimization problem (27), we rewrite this set of linear
equations in vectorial notation:

(C"V> Fre(f ™) C) £ = —CTV Frp(f ™),

which is readily solved for £. We thus obtain an approxi-
mate solution of the nonlinear real power flow equation,

f(approx) :f(lin) +Ct
=f(1in) _ C[CTvszP(fl(lin))C]71
- CTV Frp(f ).

(40)

Notably, this expression is no longer linear in the power
injections p. Nevertheless, it provides an explicit formula
for the flows f @P™ in closed form.

To evaluate the quality of our improved approxima-
tion of the real power flow, we compare the errors of
the purely linear approximation with the errors of our
improved approximation for a simple 30-bus test case and
for z = 0; see Fig. 1. In this calculation, we used the min-
imal cycle base of the network. For the heavily loaded test
grid, our approximation reduces the median of the approx-
imation errors by at least 3 orders of magnitude and the
error on the heaviest loaded line by 2 orders of magnitude.
For a grid with small loads, the reduction is up to 9 orders
of magnitude.

Since the correction term can be calculated purely alge-
braically and, in particular, reduces the errors on the
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dc Approximation
Plus Correction

ﬁwﬁﬂ

Real Power dc Approximation

(1.00 0.05 107! 107 > 1070
‘fl(RP)‘/A,V If. (RP) lm |/Ix \f (RP) (approx) /K.
(b)
10-2 R 1072
o1 'S | I‘_l_-'——"' <
= . [] /|—— ~ - []
= 10 |/| 7 107 . !
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To10® 1078 }* BR
— [ } ‘bE
= [ [ ’; N
S0 Z 101 ’,[,, )
- =
10714 1071«1
0 4 8 12 16 0 4 8 12 16
pr Pr
FIG. 1. Assessment of the improved power flow approxima-

tion (40). We compute the real power flows f for an adapted
MATPOWER 30-bus test case (see Appendix E) and compare
numerically exact values f ®?) with the linear (dc) approximation
U and the improved approximation f @ given by Eq. (40).
(a) The left panel shows the loading [fg(RP)|/Ke for each edge
e for the exact solution. The other two panels depict the errors
1 ®F — £ /K, and [,*7 — £,@PY| /K, respectively, of the
linear approximation (middle) and the improved approximation
(right). Errors are hardly visible for the improved approximation
(40), even on a logarithmic scale. (b) For a systematic assess-
ment, we increase the overall grid load by multiplying all power
injections by a scaling factor p,. The panels show the error
on all edges as a function of p; in a scatter plot for the lin-
ear approximation (left) and the improved approximation (right).
The improved approximation (40) reduces the error on most
edges by at least 2 orders of magnitudes for p; = 20 and by up
to 9 orders of magnitude for py = 1. For p; = 1, the errors of
the improved approximation are below 104, approaching the
numerical precision.

heavily loaded lines, this improved approximation can be
of interest for any application where running a full load
flow consumes too many resources (e.g., in contingency
analysis).

The procedure described above can be viewed as one
step in Newton’s algorithm restricted to the linear subspace
defined by KCL. This step can be generalized to arbi-
trary values of z and iterated to obtain an explicit tailored
algorithm to solve the optimization problems (27) and (32).
We discuss this algorithm in more detail in Appendix B.

C. Bounding the error in the linear power flow
approximation

We may use our insights to bound the error introduced
by the linear power flow approximation. That is, we derive

a bound on the norm of the difference between real and
linear power solutions,

S :f(RP) _f(lin)- (41)
To formulate the bound, we define the function
G(f) == Fre(f) — Fin(f). (42)

Decomposing this function into components G(f) =

> . Ge(fe), we have

2
Qe(ﬁa)—ﬁarcmn([];)_,_\/[@ifez_&_f_&’

Y AN
Qe(fe)_arcsm(Z) X

where the prime denotes the derivative with respect to the
argument. One can see that G,(f,) < 1 if the loads are
small, f, <« K,. Furthermore, we define the vector ¢ with
components

= K,G. (£, (43)

We then obtain the following bound for the deviation of
real and linear power flow.

Theorem 3. Let f®Y denote the solution of the real
power flow equations with z = 0 and £ "™ the solution of
the linear power flow equations, assuming that both satisfy
Ifel < Ke. Then the difference

g :f(RP) _f(lin) (44)

is bounded as

1/2
||;=||Ks||;||K=[2Keg;(/g<““>>2} . (49)

”E“K =< ”HcycleCHK, (46)

where we used the inner product (19) and the associated

norm [|§[1% = (§,&)x

Proof. We have
Fre(f ) = Fin(f ™ + 8 + G(F ™ + 6).

We can rewrite the first term as

Fin(f "™ + &) = tf<h“>+;=||2

= Fin(f ™) + Ensni

since (£,f 1), = 0 for all £ in the kernel of E. Using the
first-order Taylor expansion of the function G, and the fact
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that the function is convex, we can bound the second term
from below:

g(f(lin) + 8) > de(fe(lin)) + gé(fe(lin))é:e-

We thus obtain
» 1
Fae(f ) = Fre(f ™) + S 16N + (8,60 (47)

On the other hand, the vector £ ®P) is the minimizer of
the function Frp by definition such that Frp(f ) >
Fro(f ®)). Applying Taylor’s theorem as detailed in
Appendix C, we can obtain the bound

. 1
f@vmbzf@vm%+zmﬁ. (48)

Combining this inequality with the inequality (47), we
conclude that

I§1% + (. &)k < 0. (49)
Applying the Cauchy-Schwarz inequality, we obtain
Eq. (45).

To obtain the second bound, we note that & is a pure
cycle flow because U™ and f®" both satisfy KCL.
Hence, we find that § = I y..&. Using the orthogonality
of the projection with respect to the inner product (19), we
can rewrite the inequality (49) and obtain

0> - l&lx + (¢.8)k

||§ ”%{ + <§’ HcycleE)K

N — N — N =

&1 + (Meyerel, &) k-

Applying the Cauchy-Schwarz inequality and squaring the
result, we obtain Eq. (46). |

We numerically test the tightness of the derived bounds.
To this end, we start from the adapted MATPOWER 30-bus
test case (see Appendix E), choose the power injections p,
at random, and numerically compute both the real power
flow £ ®P) and the linear power flow £ iV Figure 2 shows
that the bound (46) incorporating the projection is much
tighter than the simpler bound (45).

Theorem 3 provides an upper bound for the K norm of
the error &. We further derive an error bound for every
single line, combining the previous result with a general
property of cycle flows.

bound B:
— | MeyacClle = [I<Ix

relative frequency

1076

5 10 25 50
B/lI€llx

FIG. 2. Assessment of bounds of Theorem 3 for the error of
the linear power flow approximation. We solve the real power
flow and the linear power flow equations for the adapted MAT-
POWER 30-bus test case (see Appendix E) and 10° randomly
sampled and valid power injection vectors p. In each case, we
compute the norm of error ||§||x and compare it with the upper
bounds given by B = |||k and B = |[Hycied ||k, respectively.
The figure shows a histogram of the ratio 3/||& ||, which serves
as a measure for the tightness of the bound. The improved upper
bound |[T¢ycied ||k is significantly better and appears to be tight.

Lemma 4. For every cycle flow f ), i.e., every flow that
satisfies Ef © = 0, we have the inequality

1
©)2 > (£©@)?
o= 0 Ko ke
for every edge a = (n,m) € €, where 2, is the effective
resistance as defined in Eq. (21).

The proof of this lemma is mostly technical such that
we postpone it to Appendix D. We can apply this inequal-
ity with Theorem 3, taking into account that E(f ®) —
£ Uiy = 0. One directly obtains the following error bound.

Corollary 1. For every edge a = (n,m) € €, we find
that
50 =12 < Ko(1 = KQo) I Meyerel Iz (50)

VI. GEOMETRY OF REAL AND LINEAR POWER
FLOW

We have shown that the real power flow equations and
the linear power flow equations can be recast as optimiza-
tion problems. Comparison of the two objective functions
Fre(f) and Fiin(f) thus provides insights into the rela-
tions of the two problems and the limitations of the linear
approximation. Here we propose a geometric approach to
this topic.

A. Geometric interpretation of the cycle condition

We discussed in Sec. III that the solutions for the real
power flow equations are characterized by two conditions:
(i) the continuity equation or KCL (13) and (ii) the cycle

043004-13



HARTMANN, BOTTCHER, GROSS, and WITTHAUT

PRX ENERGY 3, 043004 (2024)

condition [see Eq. (24)]

(51

M
Z C,q arcsin <f—e> = 2mz,.
e=1 Ke

For the linear power flow equations, the analogue of the
cycle condition is given by Kirchhoff’s voltage law (KVL):

M
Cu (L) _o.
=1 K.

e

(52)

We now discuss how the cycle condition and KVL relate to
the optimization problems defined above, restricting our-
selves to the case z = 0 for simplicity. Assuming that the
inequality constraints are nonbinding, the solution to a con-
vex optimization problem is found where the gradient of
the objective function Vy F is orthogonal to the linear sub-
space defined by the equality constraints. This relation is
sketched in Fig. 3. In our case, the linear subspace is given
by the solutions of KCL and thus is given by all points

f=r"+ce

where CY is an arbitrary cycle flow.

We now choose a standard unit basis with basis vec-
tors uy, o =1,...,M — N + 1 for the cycle space. The
orthogonality condition of the gradient and the linear

f2

A

1
Contour of -
constant ]-'(f)\/Vf(f*)
5

FIG. 3. Geometric interpretation of the cycle conditions. The
optimal solution £ * of the optimization problems (27) and (37) is
given by the point where contour lines of the respective objective
function F(f) and the linear subspace spanned by the equality
constraints Ef = p are tangential. Equivalently, £ * is the point
where the gradient VF (f') is orthogonal to the linear subspace.
Since any flow f can be decomposed into directed flow and a
cycle flow f© = Ct € ker(E), the linear subspace is spanned
by all points of the form f* + C&.

subspace is then written as
ViF(f*) - Cuy =0foralla =1,...,.M —N + 1.

Now we can insert the objective function Fgp or F,, com-
pute the gradient, and evaluate the condition. The resulting
conditions are nothing but the cycle condition (51) and
KVL (52), respectively. Hence, these graph-theoretic con-
ditions have an intuitive geometric interpretation in the
context of our optimization problem.

B. Gradient descent

The geometric interpretation enables another extension
of the linear power flow approximation. The linear flows
f (im) provide an easily computable approximation to the
real power flows £ ®. In Sec. VB we showed that this
approximation can be improved by minimizing Frp in the
spirit of Newton’s method. Instead, we may also mini-
mize Frp using a gradient-descent approach. However,
we must keep in mind the geometric aspects of the prob-
lem: any optimization must take place on the affine linear
subspace defined by KCL Ef = p. Hence, we cannot sim-
ply use the gradient of the objective function V Fgp, but
rather need its projection onto the linear subspace. Luck-
ily, Lemma 1 shows how to implement this projection. The
gradient-descent step is thus given by

' =f —yHyacVFre(f), (53)

where y is the step size. Notably, the gradient is given by

VFrp(f) = arcsin(K~'f), (54)
where the arcsine is taken elementwise.

We now provide a numerical example and evaluate the
gradient-descent step (53) for an adapted MATPOWER 30-
bus test case (see Appendix E). The optimal step size y*
for only one step can be found numerically (see Fig. 4).
With one optimal gradient-descent step, the error between
the approximated line flows and the real power flows f ®P)
is reduced as expected. In particular, the error on the heav-
iest loaded line is reduced. However, the optimal step
size depends on the power injections and the topology of
the grid, and is not known a priori. One may iterate the
gradient-descent step, where appropriate values of y may
be determined by a line search or more advanced methods
[44]. As an alternative, one may resort to Newton’s method
introduced in Sec. V B, which provides good results in a
single step.

At this point, we emphasize another application beyond
numerical optimization. Given the linear power flow
approximation, we can heuristically predict how this
approximation misses the nonlinear solution. In almost all
cases, the first gradient-descent step (53) will point in the
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(a) === optimal step size v*(py)
CXJ no improvement
x10~4
2.5
2.0
1.5
1.0

FIG. 4.

(b)
dc Approximation dc Approximation
Plus Correction
10710 1079 1078 1077 106

|fe<RP>7 fe(lm>|/Ke, ‘fg(RP)* fg(approx) ‘/Kg

Improving the linear power flow approximation with the use of a projected gradient descent. We compute the real power

flows f for an adapted MATPOWER 30-bus test case (see Appendix E) and compare numerically exact values f ®) with the improved
approximation given by Eq. (53). (a) Error of the approximation as a function of the step size y for different values of the scaling
factor p, that controls the grid load. The optimal step size y*, drawn as a dotted black line, increases with p,. The hatched red area

shows where the gradient-descent step does not improve the approximation. (b) Maps depicting the error of the approximation |f;

RP)

£/, U’Q(RP) - fe(appmx) |/K, for each individual line e, comparing the linear approximation and the improved approximation given

by Eq. (53) for the optimal step size y* and py = 1.028.

correct direction. That is, [HcycleV}"Rp(f (hn))]e > 0 typi-

cally implies that fe(RP) < fe(hn). These heuristics may be

used to assess the robustness of the linear power flow:
Assume that a line e is almost fully loaded in the linear
power flow approximation, fe(hn) ~ K,. The heuristics then
show whether the flow fe(RP) is higher or lower and thus
indicate a potential overload.

C. Properties of real and linear power flows: Examples

The geometric interpretation of the optimization prob-
lem allows further insights into the properties of the power
flows, in particular the relation of the real power flow
equations and the linear power flow approximation. We
first consider a simple example as sketched in Fig. 5(a).
For simplicity, we assume that all transmission lines have
K, = 1. Exploiting the symmetry of the problem, we have
only two independent variables f; and f; that have to satisfy
the constraint

fi+26H=p.

The physical flows are found by our minimizing the
objective

(55)

Frolfifo) = i arcsin(f) + /1 — £,% + 46 arcsin(f)

+4/1-f2=5.

(56)

If we instead invoked the linear power flow equation, we
would have

Fin(hi,/2) =1 + 457 (57)
The two optimization problems are illustrated in Fig. 5(b).
Notably, the constraint (55) defines an affine linear sub-
space, which is shown as a straight line in the Fig. 5(b).
The minimizer is found where this affine subspace is tan-
gent to the surface of constant F(f,f;). Comparing real
and linear power, we see that the surface of constant Fgrp
is more “angled” than the surface of constant J;,. Hence,
the minimizer i) g closer to one of the axes than the
minimizer f ®"), That is, the real power flows f; and f;
are more balanced than predicted by the linear power
flow approximation. Similar geometric arguments apply to
many real or linear power flow problems. By comparing
the real power flow with the linear power flow approxi-
mation, we conclude that flows are #ypically more evenly
distributed and the maximum loading is lower. We note
that this topic was addressed in Ref. [1], leading to an
efficient synchronization condition.

However, one must be careful in formalizing and gener-
alizing these statements. While they are often true, they
do not hold in every case. To gain further insights, we
conduct a numerical experiment comparing the maximum
load max, |f;|/k. in the real power flow and in the linear
approximation. For this experiment, we investigate cyclic
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(a)
%/' 0\

2 \@/ "
(b)
W2
Frr } "N
FIG. 5. Geometry of the optimization problems associated

with the real power flow and the linear power flow approxima-
tion. (a) We consider an elementary four-node network with a
high degree of symmetry and only two degrees of freedom f,
and f;. (b) The contour lines of the objective function Fy;, (f ) are
ellipses. In comparison, the contour lines of Fgp(f') are slightly
contracted along the axes. The respective optimizers f ®) and
f U™ of the constrained optimization problems (dots) are the
points where the contour lines are tangent to the affine subspace
defined by Ef = p; see Fig. 3. Because of the contraction along
the axes, the optimizer f ® is further from the coordinate axis.
Physically, this corresponds to a more balanced flow and, thus, a
smaller maximum line loading.

networks with N nodes and all line parameters set to unity,
K, = 1forall e € €. A first example is shown in Fig. 6(a).
In this case, we find that the maximum load max, |f;|/k.
is underestimated in the linear power flow approximation.
This appears surprising but does not contradict our general
reasoning. The network includes three very highly loaded
edges. The linear power flow overestimates the flow for
two of them and underestimates it for only one. Hence,
we find that the linear power flow overestimates high load-
ings on average, while we cannot make a general statement
for individual lines. We provide a rigorous statement in
Lemma 5.

We continue our numerical experiment, considering
different network sizes N and use cases. We uniformly
sample power injections p such that the grid is balanced
>, P» = 0 and compute the real power flow f (RP) a5 well
as the linear approximation f ™. For each value of N,
we count the number of samples where the linear approx-
imation underestimates the maximum loading; that is,
max, |, ®"| > max, |f,"™]. Results are shown in Fig. 5(b).

Difference Between Real Power
and dc Approximation ( )
0.125

(a) Real Power

0.100 KR
0.075 .

0.0501 **¢

e ®
% o -
D
8
N
e\’e./'
relative frequency
.
.

0.025

®/ 0\’@/ 0.000 {ee

0.0 0.5 10 20
number of nodes

FIG. 6. Maximum line loading of the real power flow and the
linear power flow approximation in a cyclic network. (a) An ele-
mentary example with N = 9 nodes and homogeneous coupling
strengths K, = 1 and power injections p, given in cycles. The left
map shows the loading [fe(RP)| /K. and the direction of the flow
for each edge e. The difference f,®" — .l can be expressed
as a cycle flow ¢ shown in the right map. Contrary to the geo-
metric intuition developed in Fig. 5, the linear approximation
underestimates the maximum line loading max, |f.|/K.. That is,
the cycle flow £ is parallel to the flow on the most heavily loaded
line. (b) For a systematic comparison, we consider networks of
different sizes N and 10° randomly sampled and valid power
injection vectors p. For each network we compute the real power
flow £ ®P and the linear approximation f ™. For each N we
count the number of networks for which max, |f,®P| exceeds
max, |f,"™| by at least 107*%. The relative frequency of such
networks increases with the size N, reaching approximately 12%
for N = 20. No such networks are observed for N < 4.

For N < 4, we find no cases where the linear approxima-
tion underestimates the maximum load. The number of
cases increases with the cycle length N until it reaches
about 12% for a ring with N = 20 nodes. Notably, cycles
with N < 4 are special as they do not support multistability
[16] and admit explicit stability conditions [1].

D. Properties of real and linear power flows: Rigorous
results

We now give two rigorous results on the distribution
of line loading and the maximum line loading comparing
real and linear power flow. We first show that there are
more heavily loaded lines in the linear power flow approx-
imation than in the nonlinear real power flow. To make
this statement rigorous, we introduce a function that indi-
cates a heavy loading. Extending Theorem 3, we define the
function

gAe(fe) = ge(fe)/ge(Ke)a (58)

which is plotted in Fig. 7. This function increases
monotonously and nonlinearly with the line load |f;|/K..
If a line is weakly loaded, |f.| < K./2, then the function
is close to zero, Qe(ﬂ) < 0.04. If the function is heavily
loaded, |f;| =~ K., the function approaches unity. We can
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1.0
=05
‘D
0.0
~1.0 —0.5 0.0 0.5 1.0
fe/Ke
FIG. 7. Dependence of the indicator function Qg(ﬂ) on the line

loading f; /K,; see Eq. (58).

thus interpret the function Qe(ﬁ) as the desired indicator
for heavy loading. We can then find the following state-
ment showing that the number of heavily loaded lines is
smaller for £ ® than for £ v,

Lemma 5. The weighted sum of heavily loaded lines as
measured by the indicator function G, (f;) satisfies

Y KG () < Y K G, M), (59)

Proof. We use the notation of Theorem 3. The vector
£ ®P) minimizes the objective function Fgp. Hence, we
obtain

lf““’)ll +G(F*) = 5 I 4 G,

Using ||f ®P) |12 = |[f(1m)||K + [|€11%, we can rewrite this as

) 1 )
G ®) < g(rtmy — Ensni < G(rm.

This inequality can be rewritten in components as
Z G < Z g™
(f (RP))
< Z — 1) K./2 ~ Z

Using G(K,) = (m — 1)K, /2, we obtain the desired result.
|

(f(lln))
“(m — DK./2’

As a second step, we consider the two most heavily
loaded lines within any cycle of the network. We prove that
the ratio of the line loadings |f;/K.| is bounded, where the
bound is tighter for the real power flow than for the linear
power flow. That is, the line loading is more homogeneous.

Lemma 6. Let f ®P) be the solution of the real power
flow equations with z = 0 and let £ ' be the solution of

the linear power flow equations. For every cycle C in the
network, we consider the two most heavily loaded lines «
and b, i.e.,

Val _ Val _ Vel

for all
X, _Kb X all e € C\{a, b}.

(60)

Then we have

arcsin lfa(RP) /K|
arcsin|f, ' /Kp|
1
1" /K|
oin) ., — =ICl-1.
Iy /Kbl

Proof. We choose a cycle basis such that the cycle C
corresponds to the first fundamental cycle, i.e., the first
row of the edge cycle incidence matrix. For the minimizer

£ ®P) e have
O, ®F)
= 821 L. Z C,; arcsin (fK

eeC

Now we can bound the different terms in the sum and

obtain
(RP)
Z C, arcsin (f )
K,

RP
. 2 (RP) |
arcsin
K,
eeC\{a}

B (1)
(IC| = 1) x arcsin <—K .

b

IA

Replacement of F,_¢ by Fji, yields the corresponding
inequality for the linear power flow solution f 1. |

This result is particularly useful if we deal with the sta-
tionary states of a grid after applying a Kron reduction
(see Sec. II). Then the network is fully connected, and
we can choose the fundamental cycles to be triangles such
that |C| — 1 = 2. We then obtain the following example
from Lemma 6. Assume that a line (n,m) is loaded with
fng,l,{P) /Kum = 99%. Then for every vertex / # n,m, one of
the lines (/,m) or (/,n) must be loaded with f ®R?)/K >
66%. That is, it is impossible for one line to get very heav-
ily loaded in isolation—some lines in the vicinity must be
heavily loaded too.

VII. CONCLUSION AND OUTLOOK

The reliable supply of electric power is material for our
society. Therefore, it is of central importance to understand
which factors determine the operation and stability of the
electric power system. In this article, we have analyzed the

043004-17



HARTMANN, BOTTCHER, GROSS, and WITTHAUT

PRX ENERGY 3, 043004 (2024)

stationary states of lossless power grids described by the
equations

Pn = ZKnm Sil’l(@n — On). (61)

Because they are nonlinear, there is no straightforward the-
ory of solvability of this set of equations. Furthermore, it
has been established that the equations can be multistable
depending on the structure of the grid [15,16,20].

In this article, we introduced a novel approach to the
stationary states of lossless power grids. The main idea
is to shift the attention from the nodes of the grid to the
edges and cycles and to reformulate the equations as a con-
vex optimization problem. This formulation provides new
insights into the structure of the problem and allows us to
derive a series of rigorous results.

The most important results are as follows:

(1) The optimization approach provides a systematic
algorithm to systematically compute all stationary
states that satisfy |6, —6,| < /2 for all edges
(n,m) € €.

(2) The linear power flow or dc approximation is recov-
ered as the quadratic approximation to the optimiza-
tion problem. This insight allows us to systemati-
cally bound the error induced by this approximation.

(3) We have introduced two explicit formulae that pro-
vide improved approximations for the real power
flows.

(4) The optimization approach provides a geometric
interpretation of the network equations. This inter-
pretation provides rigorous results on the existence
of solutions.

The computation of all stationary states may still be a com-
putationally hard problem. The optimization formulation
facilitates the treatment for a given winding vector z, but
the number of possible winding vectors may grow expo-
nentially with the size of the network. A detailed analysis
of the possible winding vectors z and an upper bound for
the number of stationary states is provided in Ref. [20].
The basic idea of this article can be generalized to
related network flow problems. First, a generalization
beyond the sinusoidal coupling sin(6, — 6,,) is straight-
forward as long as the coupling is antisymmetric and
invertible on a certain interval. That is, the set of equations

with an antisymmetric function 4 can be reformulated as
an optimization problem with the objective function

F(f) =Y H({f:/K), (63)

ec¢

where H is the primitive of the inverse A~!. Unfortu-
nately, there is no obvious way to include Ohmic losses
or coupling function with phase lag in the formalism.

Second, the basic idea may be generalized to the loss-
less load-flow equations. This set of equations includes the
voltage magnitudes and reactive power flows in addition
to the real power. Rigorous results on the solvability of the
load-flow equations are notoriously difficult to obtain but
are of outstanding practical importance.

The data and code that support the findings of this article
are openly available [45].
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APPENDIX A: SOLUTIONS OF KCL

In this appendix, we review results on the existence of
solutions of KCL with with flow constraints,

Ef =p,

In the context of the optimization problems (27) and (32),
this is equivalent to the question of whether the feasible
set is nonempty. We provide two lemmas to systematically
answer this question following Ref. [16].

First, one can map the given problem with multiple
sources and sinks to a single-source, single-target flow
problem, which is commonly studied in graph theory
[46,47]. Given a network with vertex set U, edge set €,
and edge capacities K., we define an extended graph &' =
(0, ') by adding two vertices s and ¢ that are connected
to the sources and sinks, respectively. That is,

Ifel < K. foralle € €. (A1)

U =P U {s, 1},
¢ = €U {(s,mlpy > 0} U {(m,0lp. < 0}.
The coupling strengths of the new edges K, and K,

are infinite. Furthermore, we define the cumulative input
power and output power:

ﬁs = Z Pn

neV.,pp>0

P = Z Pn-

neV,py<0
As usual, we assume that the network is balanced such that
ﬁs = _ﬁt-

Lemma 7. A solution of KCL with line limits (Al)
exists if and only if the maximum s —¢ flow in the
extended network &’ is larger than or equal to p;.
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Second, we give a criterion in terms of partitions of
the network. Let (U;,*Y,) be an arbitrary partition of the
vertex set U such that

%1 U%zzﬁ and %1 ﬂmzzﬂ

and let €(U1,0,) = {(n,m) € E|n € W, m € Y,} be the
cut set induced by this partition. Define

pr=>_pw P2=) pn Kn=

neyy ney;

> K

e€€(V1,0,)

Then we have the following lemma (see Ref. [16] for a
proof).

Lemma 8. If for all partitions (U, *0,) we have

1] = |p2| < Ko, (A2)

then there exists a solution of KCL with line
constraints (A1l).

APPENDIX B: NEWTON’S METHOD TO SOLVE
OPTIMIZATION PROBLEMS (27) AND (32) FOR
ANY WINDING VECTOR ¢

In Sec. VB we introduced an approximate expression
for the solution of the nonlinear real power flow equa-
tions. We can iterate this scheme to gradually refine the
approximate solution. Hence, we have a tailored algorithm
to solve the optimization problems (27) and (32) to obtain
f ®) yp to any precision. This algorithm can be formulated
for any winding vector z, thus providing a method to com-
pute different stable fixed points. The algorithm resembles
Newton’s method refined to the affine subspace defined by
equality constraints; see Chap. 4 in Ref. [48].

We initialize our algorithm by solving the linear prob-
lem (39) to obtain £ ™ and set £ @ = £ Then, in each
iteration step n, we update our flow vector as

f(n+1) :f(n) +Ce™, (B1)

where £ is the solution to the linear system given by

VF, ;= 0)-8" = —VF, m(l=0). (B

Here F_ - denotes the objective function (33) with wind-

ing vector z using f ™ as a reference solution of KCL.
Furthermore, V2.7-"zf w and VF_ . and denote that the
gradient and Hessian of this function.

Since CL™ € ker(E), the linear equality constraints of
(27) and (32) are always satisfied if the initial guess f ¥’
is feasible. Hence, in each iteration, we must check only
whether the inequality constraints—that is, the line lim-
its—are not violated. If the line limits are violated in any

iteration step, no feasible solution exists, since the feasi-
ble space is convex. Computer code to solve optimization
problems (27) and (32) using Newton’s method can be
found in Ref. [45].

APPENDIX C: ADDITIONAL MATERIAL FOR
THE PROOF OF THEOREM 3

In this appendix, we provide a technical result used in
the proof of Theorem 3. We use the formulation (33) of
the objective function with z = 0, £ © = £ ®" and write
& = —C¢. Then

Fre(f ™) = Frmo(—20),
Fre(f ®) = F,_9(0).

Now we apply the multivariate Taylor theorem with the
Lagrange form of the remainder, which yields

1
Frmo(—) = Foep(0) — VF,—9(0) - £+ Eﬂvzﬁ=o(w,

where A € RY-N+! i5 a vector with entries A, between
0 and ¢,. The linear term of the Taylor expansion van-
ishes because we perform expansion around the minimizer.
The quadratic term can be bounded from below. Using the
Hessian (34), we obtain

V2 F_o(M)E

1
= ¢"C"diag Ct

K= 10+ 5, Chy?

1
> Td‘ e — 2 .
> & diag (1@)‘3 &%
Hence, we obtain

. 1
Fre(f ) > Fpp(f ®)) + Ensné.

APPENDIX D: PROOF OF LEMMA 4

To prove the inequality

1
©)2 > (£©)?
bl = () K.(1 — K, Q)

for each cycle flow £ and for each edge a = (n,m) € €,
we proceed in reverse order. That is, we fix the flow on one
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edge a and solve the optimization problem
: 2
min
; gk
8a :fa(C)

by the methods of Lagrangian multipliers. We define the
Lagrangian

subjectto Eg =0,

L@ =gk~ [An ZEnbgb] A
n b

and find the stationary points

if (n,m) # a,

if (n,m) = a,

g — Knm ()Vn - )\m)
) Knm ()Vn - )\'m + /,L)

and note that -fa(:)n,m) = K,m(My — A + ). Hence, the
optimizer g* generally assumes the form of a potential flow
except for the edge a. Hence, we can write it as

g = KE"A + cw,,

where again w, is the ath standard basis vector. We now
have to determine A and c¢ such that the two constraints are
satisfied:

(1) Evaluation of the first constraint Eg* = 0 yields
EKE")\ + cEw, = 0.

With the use of EKE" = L, this set of linear equa-
tions is solved by

A= —cLEw,.

(2) The second constraint g, = £, can alternatively be
written as f,© = w, g* and we thus have

£ =w, (cw, + KE" (—cL"Ew,))
& =901 —w KETL*Ew,)”".
We can now compute
lg*lx =g K 'g"
= (ew, +A"EK)K ' (KE"A + cw,)
=K AL+ 2ew  ET .
Inserting the expression for A, we obtain

*12 2 p—1 2 TT
lg*lx =K, ' +cw E' L"LL" Ew,
=Lt
—2¢*w E"LTEw,

=c? (K;l — w;ETL‘LEwa) .

Thus, inserting the expression for ¢ and using w) K =
K.w/, we get

lg*I2 = (£, )* (1 — w  KETL*Ew,) "’
x (K;' —w, E'L"Ew,)
-1

=K |1 -K,w ETLTEw, | ,
~——

=Qq

which concludes the proof by our noting that [|g*||% <

TAF2

APPENDIX E: MATPOWER 30-BUS TEST CASE

The original MATPOWER 30-bus test case [49] data are
intended to be used to study the full ac power flow. Hence,
the power injections are balanced only up to losses. In this
work, we neglect losses as well as the reactive power flows
and thus slightly adapt the MATPOWER 30-bus test case to
our needs. We keep the topology and line admittances of
the grid but rebalance the real power injections. That is,
the real power imbalance ), p, of the loads and genera-
tors is added to the power injection of the first generator
to arrive at a balanced grid. To study different grid loads,
we introduce a power factor py as a multiplicative scalar
that rescales the rebalanced power injections, effectively
changing the line loading.
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