001034575 001__ 1034575
001034575 005__ 20241218210705.0
001034575 037__ $$aFZJ-2024-07338
001034575 041__ $$aEnglish
001034575 1001_ $$0P:(DE-Juel1)191436$$avon Foerster, Konstantin$$b0$$eCorresponding author$$ufzj
001034575 1112_ $$aElectrochemistry 2024$$cBrunswick$$d2024-09-16 - 2024-09-19$$wGermany
001034575 245__ $$aThe Effect of PiperION Anion Exchange Membranes on the Performance of a Direct Formic Acid Production Electrolyzer
001034575 260__ $$c2024
001034575 3367_ $$033$$2EndNote$$aConference Paper
001034575 3367_ $$2BibTeX$$aINPROCEEDINGS
001034575 3367_ $$2DRIVER$$aconferenceObject
001034575 3367_ $$2ORCID$$aCONFERENCE_POSTER
001034575 3367_ $$2DataCite$$aOutput Types/Conference Poster
001034575 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1734515820_15481$$xAfter Call
001034575 520__ $$aCO2 can serve as a carbon feedstock in Power-to-X technologies such as the electroreduction of CO2 to value-added chemicals.[1] Among these chemicals, formic acid offers various applications and can be obtained as a pure aqueous solution via Direct Formic Acid Production (DFAP) requiring only water and CO2,[2] which decreases both substrate and downstream purification cost. Yet, several performance improvements are required. In our work, a two-membrane three-compartment DFAP design[2] was investigated employing different anion exchange membranes (AEMs). High current densities (500 mA cm-2 at 8.3 kWh kg-1) were achieved along with favorably high formic acid concentrations (4 mol L-1) as both parameters are of interest from an industrial point of view.
001034575 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001034575 536__ $$0G:(DE-Juel1)BMBF-03SF0627A$$aiNEW2.0 (BMBF-03SF0627A)$$cBMBF-03SF0627A$$x1
001034575 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
001034575 65017 $$0V:(DE-MLZ)GC-1601-2016$$2V:(DE-HGF)$$aEngineering, Industrial Materials and Processing$$x0
001034575 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x1
001034575 7001_ $$0P:(DE-Juel1)180299$$aRutjens, Bastian$$b1
001034575 7001_ $$0P:(DE-Juel1)174352$$aCalvo, Sergio$$b2
001034575 7001_ $$0P:(DE-Juel1)179220$$aSchmid, Bernhard$$b3
001034575 7001_ $$0P:(DE-Juel1)164223$$aWeinrich, Henning$$b4
001034575 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b5
001034575 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b6$$ufzj
001034575 909CO $$ooai:juser.fz-juelich.de:1034575$$pVDB
001034575 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191436$$aForschungszentrum Jülich$$b0$$kFZJ
001034575 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)191436$$aRWTH Aachen$$b0$$kRWTH
001034575 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174352$$aForschungszentrum Jülich$$b2$$kFZJ
001034575 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179220$$aForschungszentrum Jülich$$b3$$kFZJ
001034575 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b5$$kFZJ
001034575 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b6$$kFZJ
001034575 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b6$$kRWTH
001034575 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001034575 9141_ $$y2024
001034575 920__ $$lyes
001034575 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001034575 980__ $$aposter
001034575 980__ $$aVDB
001034575 980__ $$aI:(DE-Juel1)IET-1-20110218
001034575 980__ $$aUNRESTRICTED