001     1034575
005     20241218210705.0
037 _ _ |a FZJ-2024-07338
041 _ _ |a English
100 1 _ |a von Foerster, Konstantin
|0 P:(DE-Juel1)191436
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Electrochemistry 2024
|c Brunswick
|d 2024-09-16 - 2024-09-19
|w Germany
245 _ _ |a The Effect of PiperION Anion Exchange Membranes on the Performance of a Direct Formic Acid Production Electrolyzer
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1734515820_15481
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a CO2 can serve as a carbon feedstock in Power-to-X technologies such as the electroreduction of CO2 to value-added chemicals.[1] Among these chemicals, formic acid offers various applications and can be obtained as a pure aqueous solution via Direct Formic Acid Production (DFAP) requiring only water and CO2,[2] which decreases both substrate and downstream purification cost. Yet, several performance improvements are required. In our work, a two-membrane three-compartment DFAP design[2] was investigated employing different anion exchange membranes (AEMs). High current densities (500 mA cm-2 at 8.3 kWh kg-1) were achieved along with favorably high formic acid concentrations (4 mol L-1) as both parameters are of interest from an industrial point of view.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
536 _ _ |a iNEW2.0 (BMBF-03SF0627A)
|0 G:(DE-Juel1)BMBF-03SF0627A
|c BMBF-03SF0627A
|x 1
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 2
650 1 7 |a Engineering, Industrial Materials and Processing
|0 V:(DE-MLZ)GC-1601-2016
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 1
700 1 _ |a Rutjens, Bastian
|0 P:(DE-Juel1)180299
|b 1
700 1 _ |a Calvo, Sergio
|0 P:(DE-Juel1)174352
|b 2
700 1 _ |a Schmid, Bernhard
|0 P:(DE-Juel1)179220
|b 3
700 1 _ |a Weinrich, Henning
|0 P:(DE-Juel1)164223
|b 4
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 5
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 6
|u fzj
909 C O |o oai:juser.fz-juelich.de:1034575
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)191436
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)191436
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)174352
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)179220
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21