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Analysis of Rutherford 
backscattering spectra 
with CNN‑GRU mixture density 
network
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Helene Hoffmann 3, Sebastian Starke 3 & Martin Finsterbusch 1

Ion Beam Analysis (IBA) utilizing MeV ion beams provides valuable insights into surface elemental 
composition across the entire periodic table. While ion beam measurements have advanced towards 
high throughput for mapping applications, data analysis has lagged behind due to the challenges 
posed by large volumes of data and multiple detectors providing diverse analytical information. 
Traditional physics-based fitting algorithms for these spectra can be time-consuming and prone 
to local minima traps, often taking days or weeks to complete. This study presents an approach 
employing a Mixture Density Network (MDN) to model the posterior distribution of Elemental Depth 
Profiles (EDP) from input spectra. Our MDN architecture includes an encoder module (EM), leveraging 
a Convolutional Neural Network-Gated Recurrent Unit (CNN-GRU), and a Mixture Density Head 
(MDH) employing a Multi-Layer Perceptron (MLP). Validation across three datasets with varying 
complexities demonstrates that for simple and intermediate cases, the MDN performs comparably to 
the conventional automatic fitting method (Autofit). However, for more complex datasets, Autofit still 
outperforms the MDN. Additionally, our integrated approach, combining MDN with the automatic fit 
method, significantly enhances accuracy while still reducing computational time, offering a promising 
avenue for improved analysis in IBA.

Ion Beam Analysis (IBA) comprises methods used to investigate the elemental and isotopic composition of 
samples by observing the nuclear and electronic interactions between MeV projectile ions (e.g., H, He, or I) and 
target electrons and nuclei1,2. IBA finds applications across diverse fields such as batteries, nuclear fusion, geology, 
space exploration, biology, and more. Each field poses unique questions, necessitating specific implementations 
of these methods tailored to the relevant elements, sampling volumes, and inquiries.

Different sub-methods are defined based on the investigated product, including Rutherford-backscattering 
spectrometry (RBS), nuclear reaction analysis (NRA), particle-induced X-ray emission spectroscopy (PIXE), 
among others. The energy loss of the projectiles and some resulting products in the sample encode depth informa-
tion within the energy-resolved product spectra. In comparison to electron-based methods, ion-based techniques 
exhibit less statistical blurring (straggling) in the energy distributions concerning the energy loss. This results in 
appreciable depth resolutions ranging from a few micrometers down to less than 1 nanometer. When combined 
with the 2D surface scanning of the beam-spot, this provides 3D (tomographic) information capabilities.

Recent advancements in high-throughput and micro-beam end-stations3, alongside modern high-brightness 
accelerators and high-rate detectors and electronics, have substantially increased the volume of generated infor-
mation over the past few decades. IBA spectra, especially charged particle spectra, encode depth and concen-
tration information within the energy and intensity scales. The ion energy-loss induces a nonlinear coupling 
between signals related to different sample constituents. Each constituent may prompt various reactions with 
the projectile, resulting in contributions at different positions in the spectrum. These contributions possess 
individual heights (cross-sections) and depth information (product stopping) and may potentially overlap with 
other contributions.

Extracting sample information from these spectra has historically been time-consuming, relying on input 
conditions provided by IBA experts. Typically, fine-fitting using function minimizer like simplex methods leads to 
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the final results. The speed of data evaluation and the necessity for manual interaction have emerged as significant 
limiting factors in the practical application of IBA. Although direct inverse calculations are possible4, they often 
yield results with large uncertainties due to numerical instabilities arising from uncertainties in experimental 
databases and experimental noise5. Additionally, deviations from Bragg’s law, straggling, and detector effects 
are usually not accounted for.

To address the limitations of traditional ion beam spectra evaluation, previous studies have employed deep 
learning-based methods, such as artificial neural networks (ANNs)6–12. The primary advantage of these meth-
ods lies in their significantly faster evaluation times, which, once appropriately trained, can assess thousands of 
spectra in less than a second, as opposed to days or weeks. Some earlier works6,8–11 explored the use of artificial 
neural networks (ANNs) in relatively simple sample scenarios, typically involving sample structures with fewer 
than three layers and fewer than five elements per layer. Exceptions include studies such as7,12, which assumed 
more than three layers. However, the number of elements per layer remained modest, with the total number of 
predicted depth profile parameters being fewer than 11. Given the success of these studies in relatively simple 
cases, there is significant interest in evaluating the accuracy of such methods in more complex situations. These 
scenarios may encompass not only increased layers and elements but also a greater number of depth profile 
parameters within the sample.

Rutherford Backscattering Spectrometry (RBS) analysis presents a classic example of an inverse problem, often 
entailing ambiguity due to the potential existence of multiple solutions for a given spectrum. This challenge is 
particularly pronounced in cases where overlaps occur in cross sections, further complicating the interpretation 
process. While the primary objective of RBS analysis is to derive a precise point estimate of elemental concentra-
tion, it is also crucial to articulate the associated uncertainty in these predictions. Traditional artificial neural 
networks (ANNs), as utilized in prior studies, do not inherently provide error estimation; therefore, additional 
steps must be taken to obtain predictions for the error estimates.

In this study, we depart from simple artificial neural network (ANN) regression and embrace Bayesian regres-
sion, enabling us to learn the conditional density (posterior) from the data. This transition provides insights into 
our understanding of the underlying distribution of parameters. Using the knowledge of the posterior not only 
facilitates the calculation of the best estimate for the Elemental Depth Profile (EDP) given an input spectrum 
but also allows for the assessment of their uncertainty, identification of correlations, and even discern multiple 
EDP solutions that reproduce the input spectrum.

Several approaches exist to learn a conditional density from a set of observations, including normalizing 
flow13, conditional variational auto-encoders14, Generative Adversarial Network15, and likelihood-free approaches 
as in16. However, in this study, we opt for a mixture density network (MDN)17.

MDNs offer advantages in terms of interpretability, cost-effective evaluation, and efficient sampling of result-
ing posteriors. Moreover, MDNs provide an analytical formula for calculating the expectation value and covari-
ance of predictions, alleviating the need for laborious sampling procedures to evaluate them from the posterior 
density. This feature thus enhances computational efficiency. Furthermore, our numerical experiments, outlined 
in Supplementary Material A, demonstrate that MDNs yield more accurate point estimates compared to neural 
network-based point-regression approaches like ANNs. This advantage likely stems from MDNs’ ability to capture 
the distribution of outcomes, enabling them to handle data points that deviate from the main trend or exhibit 
unusual behavior more effectively.

RBS simulation and automatic fit
In the introduction, Rutherford Backscattering Spectrometry (RBS) was introduced as an ion beam analysis 
(IBA) technique that utilizes the spectrum of back-scattered particles to estimate the elemental depth profile 
of a sample. In this section, we provide a brief overview of the theoretical foundations of RBS and describe the 
typical evaluation process of an RBS spectrum.

Figure 1 illustrates a schematic representation of an ion beam (p) with energy Ein , directed at a sample with 
an incident angle α normal to its surface. One of the resulting products of the bombardment is the same ion (p) 
exiting the sample at an angle β with a detected energy Eout . For simplicity, we assume the sample is homogene-
ous, implying a constant elemental concentration at all depths. An inhomogeneous sample can be modeled by a 
stack of homogeneous ones, thus it is just a straightforward generalization of our discussion here.

Considering the homogeneous sample as a series of infinitesimally thin layers, we can predict the number 
of back-scattered ions (p) as a function of the detected energy Eout by summing the contributions from each 
individual layer. To calculate the contribution from a layer with thickness dx (refer to Fig. 1), containing Ni atoms 
of type Ai , the number Np of back-scattered particles is related to the layer thickness dx as

Here, ρi(x) is the number density of atom species Ai , � is the detector solid angle, and Ep is the energy of the 
projectile before scattering (see Fig. 1). In laboratory, the number of back-scattered particle Np is measured as 
a function of the detected energy Eout . Therefore, to connect with the measured quantity, we must express the 
depth x in terms of Eout . The strategy is to relate x with the energy Ep of the ion before scattering. The relation is 
given by the stopping power equation

(1)
dNp

Np
= dx d�

∑

i

ρi(x)
dσi(Ep)

d�

(2)
dEp

dx
= −ρ(x)S(Ep, ρi(y))



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:16983  | https://doi.org/10.1038/s41598-024-67629-y

www.nature.com/scientificreports/

Here, ρ(x) =
∑

i ρi(x) is the total number density and S(E, ni(y)) is the stopping power. After the scattering at 
depth x, the back-scattered energy E′p is related to Ep as

where k is a kinematical factor which depend on the reaction type, the released energy of the reaction (Q), the 
masses of all particle involved in the reaction, and the scattering angle θ = α + β . Using Eqs. (1, 2, 3), the calcu-
lation of the number of back-scattered particles as a function of the detected energy Eout bin can be performed. 
While the underlying physics of simulating ion backscattering is relatively straightforward, it’s important to note 
that modern simulation softwares(for review and comparison, see5,18), such as SIMNRA19, accounts for more 
nuanced effects. These include straggling (the broadening of the ion’s energy distribution), sample characteristics 
like roughness and porosity, and detector-specific effects such as pile-up and finite resolution.

Figure 2 illustrates RBS spectra of projectile ions, simulated using SIMNRA, derived from three sample setups 
(data set A, B, and C from section “Methods”) that will be investigated in this work. The horizontal axis denotes 
the channel number, which is linearly associated with detected energy following calibration of the experimental 
setup. Meanwhile, the vertical axis represents the count of backscattered ions corresponding to the energy within 

(3)E′p = kEp

Figure 1.   Schematic view of an ion beam coming into a sample and producing an ion with a detected energy 
Eout.

Figure 2.   SIMNRA predictions of the RBS spectrum of projectile ions from three sample setups, as discussed in 
section “Methods”. Here, the scale factors S for data sets A, B, and C are S ∈ {0.05, 10, 1} , respectively.
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each channel. Given the nature of the measurement, which involves counting, the count within each channel 
conforms to Poissonian statistics.

RBS analysis entails estimating the elemental depth profile (EDP) of a sample based on a measured RBS spec-
trum. The EDP is characterized by the EDP parameters, which represent the thickness for each element in each 
sublayer structure of the sample. Given that we solely possess a simulator for the forward process, this analysis 
constitutes an instance of an inverse problem. Typically, the analysis involves iteratively comparing the forward 
predictions from SIMNRA to the measured spectrum until a convergence criterion is satisfied. This method of 
estimating EDPs will be referred to as automatic fitting or Autofit.

The general procedure of an Autofit typically involves minimizing a χ2 function, which quantifies the dis-
similarity between the input spectrum and the simulated one given a set of EDP parameters. Ideally, a global 
minimizer such differential evolution or evolutionary annealing (see20 for performance comparison in the RBS 
analysis case), should be used to obtain the global minimum. Such an algorithm also has the advantage of 
not requiring starting EDP parameters to initiate the procedure. However, it generally comes with a higher 
computational cost compared to a local minimizer, such as adaptive Nelder–Mead21. Given that our aim is to 
perform massive analysis of thousands of spectra within limited time constraints, a good and efficient optimizer 
is therefore preferred.

In this study, Autofits are conducted using the AutoNRA program, a custom Python application developed 
to augment the capabilities of the SIMNRA program. AutoNRA features a graphical user interface built with Qt 
PySide and supports running multiple SIMNRA fits simultaneously using multi-threading or multi-processing. 
These features enable us to utilize nearly 100% of the available computing resources. For our specific use case, 
Autofits are typically executed using 120 threads on a Windows PC equipped with an AMD Ryzen Threadripper 
CPU (64 cores).

In our implementation, the Autofit fit minimizes the following χ2 function :

Here, N is the spectrum length, xi represents the spectrum value for the channel i, and SIMNRA i (y ) signifies 
the prediction by the SIMNRA program given the EDP parameters y . As mentioned before, the spectrum data is 
inherently Poissonian, the uncertainty in the spectrum is assumed to be the square root of itself plus a unit shift 
factor to avoid numerical issue when xi = 0 . Minimization of χ2 is carried out using adaptive Nelder–Mead21. 
One of key parameters in the Nelder–Mead algorithm, as implemented in the Python SciPy package, is Maxfev. 
This parameter determines the maximum number of function calls-such as the χ2 function in our case-before 
the algorithm terminates. In our study, we set Maxfev to be 200× D , where D represents the number of EDP 
parameters. Additionally, the Nelder–Mead algorithm is restarted every 500 function calls using the minimum 
value obtained from the previous run as the new starting point.This approach helps the algorithm find a better 
minimum in our experience.

To evaluate the accuracy of predicted EDP parameters represented by y (in the Autofit method, this is simply 
the minimum of χ2(y) ), we can perform a χ2-test to check if its corresponding SIMNRA spectrum agrees with 
the input spectral data x. Assuming that the spectral data is normally distributed with variance x + 1 around the 
SIMNRA prediction, the resulting χ2(y) follows a χ2-distribution with N degrees of freedom, denoted as χ2

N , 
where N is the length of the spectrum. We note that the spectral data is Poissonian by nature with a standard 
deviation of 

√
x . Therefore, the assumption above relies on the similarity between Gaussian and Poissonian 

distributions. This typically happens at large x, which also implies 
√
xi + 1 ≈ √

x.
Given the statement above, then the χ2

N distribution can act as an ideal distribution against which we can 
compare the observed χ2(y) . This comparison allows us to assess whether the EDP parameters y remain a viable 
solution to the inverse problem: given x, find y . In a strict statistical hypothesis testing method, one can choose 
a desired level of significance α , for example α = 0.05 . Then a solution y is rejected if χ2(y) is larger than the 
100(1− α) percentile of the ideal distribution, otherwise it is accepted. It is worth mentioning that the actual 
value of χ2 can be much lower than the ideal χ2

N . This discrepancy occurs when many channels have xi values 
close to 0. In such cases, the contributions from these channels to the χ2 value can be negligible, resulting in a 
smaller χ2 value than expected.

It is important to mention that when using experimentally measured spectra, the statistical test as described 
above, which rely on strict assumptions, may lose its validity. This is mainly due to SIMNRA’s dependency on 
input data derived from experimental measurements, including cross-sections and stopping power, which inher-
ently possess limited accuracy. Consequently, assessments based on such data may incorrectly label fits with large 
χ2 values as poor, even when they are indeed satisfactory. In this study, our analyses solely use simulated spectra 
generated by SIMNRA. Consequently, the aforementioned issue does not apply to our case. Therefore, we can 
confidently utilize the above statistical test to assess the quality of our evaluation.

Methods
Density estimation using mixture of Gaussian
The goal of this work to estimate the posterior, or the conditional density p(y|x) of minmax-scaled EDP param-
eters y = (y1, y2, . . . , yD) , given a standard-scaled spectrum x. In the mixture density framework, we assume 
that the posterior can be approximated by a mixture of Gaussian

(4)χ2(y) =
N
∑

i

(

xi − SIMNRAi(y)√
xi + 1

)2
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Here M is the number of Gaussian components, D is the number of EDP parameters, while πi , µi
j and σ i

j  are the 
mixture fraction of the i-th Gaussian component, the center of the i-th Gaussian component that correspond to 
the j-th EDP parameter, and its standard deviation respectively. These quantities are the outputs of our model 
and are functions of x. Equation (5) can be rewritten as

Given the posterior, the expectation value and variance of the predictions for y can be calculated as (the input 
variable x is being suppressed for conciseness reason)

where δij is the Kronecker delta and we have used the following identities :

Note that even though the covariance of the individual Gaussian components is diagonal, the resulting Gaussian 
mixture has non zero off-diagonal covariance. Using the fact that 

∑

i πi = 1 , we can also rewrite (10) as

where

Given the covariance Covij[y] , the variance is identified as the diagonal part of the covariance22:

While our model inherently provides a posterior distribution given an input spectrum, the computational bur-
den of handling the full density can become prohibitive, especially when thousands of spectra need evaluation. 
This is where opting for a point estimate is advantageous. In this case, the information on the full posterior is 
summarized in the form of uncertainty estimates. Typically, the point estimate of interest is derived from the 
global maximum of the posterior distribution, known as the Maximum a Posteriori or MAP estimate. However, 
the challenge lies in the fact that a mixture of M Gaussian distributions can contain anywhere from one to M 
local minima, rendering the task of finding the global maximum of the posterior computationally expensive.

(5)p(y|x) ≈
M
∑

i=0

πi(x)Ni(y|x)

(6)Ni(y|x) =
1

(2π)D/2
1

�D
j σ i

j (x)
exp



−1

2

D
�

j=0

�

yj − µi
j(x)

σ i
j (x)

�2




(7)p(y|x) = 1

(2π)D/2

M
∑

i

exp

(

−φi(x, y)

2

)

(8)φi(x, y) =
D
∑

j=0

(

yj − µi
j(x)

σ i
j (x)

)2

− 2 log

(

πi(x)
∏D

j σ i
j (x)

)

(9)E[y|x] =
∫

y
∑

i

πiNid
Dy =

∑

i

πiµ
i

(10)
Covij[y|x] =

∫

(

yi −
∑

k

πkµ
k
i

)(

yj −
∑

k

πkµ
k
j

)

∑

l

πlNl d
Dy

=
∑

k

πk(σ
k
i )

2δij +
∑

k

πkµ
k
i µ

k
j −

∑

k,l

πkπlµ
k
i µ

l
j

(11)
∫

yi Nld
Dy = µl

i

(12)
∫

yiyj Nld
Dy = δijσ

l
i

2 + µl
iµ

l
j
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πk(σ
k
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∑

k
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∑
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k
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j
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∑

k

πk

[

(σ k
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2δij +
(

µk
i − µi
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µk
j − µj

)]

(13)µi =
∑

l

πlµ
l
i = E[yi]

(14)Var[yi] =
∑

k

πk

(

(σ k
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2 +
(

µk
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In this work, to predict a point estimate and quantify its uncertainty, we use the mean and standard devia-
tion of of the predicted posterior distribution. Thus, the point estimate is given by (9), while its uncertainty is 
given by (14).

MDN architecture and training
The Mixture Density Network (MDN)17 utilized in this study comprises two integral components: the Encoder 
Network (EN) and the Mixture Density Head (MDH). The EN encodes the spectrum into a vector, serving as 
input to the MDH, which produces the mixture coefficient πi , the center of the Gaussian component µ(i) , and 
its standard deviation σ (i) as output.

The EN, responsible for transforming the input spectrum into a format digestible by the MDH, is implemented 
using a convolutional neural network (CNN). Given that a spectrum can be viewed as a 1D image, CNN is a 
natural choice, applying learnable convolutional filters to automatically extract features. In previous spectroscopic 
analyses23–25, CNN has demonstrated its prowess in capturing intricate details inherent in spectroscopic data.

In CNN, reduction operations like pooling and non-unit stride reduce data dimensionality, resulting in a 
per-channel output from the CNN that is also spatially reduced. Despite this reduction, the numerous output 
channels often lead to a high-dimensional output after flattening. To address this, a gated recurrent unit (GRU)26 
is employed to sequentially process these input channels, effectively reducing the output dimension. Our experi-
mentation has validated that an MDN featuring a combined CNN+GRU architecture as the EN consistently 
outperforms its counterpart with a sole CNN EN, particularly in the IBA case (see our ablation study in Sup-
plementary Material A).

The GRU, a type of recurrent neural network (RNN), is specifically designed to capture long-term depend-
encies within sequential data. Serving as a computationally efficient alternative to the long short-term memory 
(LSTM) network27, the GRU incorporates a sophisticated gating mechanism involving a reset gate for determin-
ing the amount of previous state information to forget and an update gate for deciding how much previous state 
information to pass to the next time step. In our approach, the multi-channel output from the CNN is sequentially 
processed by the GRU to generate a final representation of the input data before being fed into the MDH unit.

The architecture of the CNN-GRU-based MDN is depicted schematically in Fig. 3. During the forward step, 
a preprocessed spectrum x is inputted into a 1D CNN, which outputs several channels of spatially reduced sub-
spectra. These sub-spectra are subsequently processed in sequence by the GRU network, whose hidden states 
are initialized with zeros. The final output (hidden states) of the GRU network serves as a summary statistic h, 
which is then fed into the MDH. In the MDH, a simple feed-forward network (without hidden layers) transforms 
the summary statistic h into predictions for µ . To predict σ , the output µ is first concatenated with h. Then, a 
multilayer feed-forward network, with a softplus function as the output layer activation, transforms the input 
into the prediction of σ . Finally, µ and σ are concatenated with h, and a feed-forward network (without hidden 
layers) transforms the concatenated inputs into predictions for the mixture coefficient π.

The MDN training process involves minimizing negative log posterior loss, with additional steps taken to 
prevent numerical instability (see Supplementary Material B for details). Throughout training, we employ the 
AdamW optimizer28 to minimize the loss function. For this study, we set the total number of training epochs 
to 100, divided into 5 steps. Within each step, we utilize different learning rates and implement early stopping 
if there is no improvement in the loss function of the validation data for more than 20 epochs. Additionally, 
in each step, the network initializes with parameters that yielded the best validation loss in the preceding step. 

GRU

Feed Forward

Feed Forward

GRU GRU

Central Value 
Predic�on

Ini�al Hidden StateInput

Error Predic�on Feed Forward

Mixture Predic�on

Encoder Network Mixture Density Head

Figure 3.   Schematic of the CNN-RNN Model used in this work.
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The entire model and training process are implemented using the PyTorch package. On a PC equipped with an 
NVIDIA GPU RTX A-4000, the training procedure typically completes in less than 5 min when using 10,000 
training data samples.

Data generation and the model
Adopting a data-driven approach, the machine learning methodology utilized in this study heavily depends on a 
significant amount of training data. This data is acquired by first establishing a range of Elemental Depth Profile 
(EDP) parameters and then sampling them under the assumption of a uniform distribution.

Once the range of these parameters is established, a software program capable of performing forward cal-
culations, such as SIMNRA19, is employed to compute the corresponding spectra. Subsequently, these spectra 
are rounded to the nearest integer and are subjected to the application of Poisson noise. This step is essential 
for emulating experimentally produced spectra and serves as a data augmentation technique to improve the 
performance of a machine learning model29.

In order to assess the learning capacity of our models with respect to the inverse map as the complexity 
(defined in terms of the number of EDP parameters) of the problem escalates, we generate three types of train-
ing data: 

1.	 dataset A: This dataset corresponds to samples containing two elements, Deuterium (D) and Tungsten (W), 
arranged in two layers, each with a constant concentration of D and W. The Elemental Depth Profile (EDP) 
for this dataset is defined by four parameters, indicating the thickness of each element in the respective layers. 
The dataset A represents an easy task with no ambiguity for the inverse map. Consequently, we choose MDN 
model with a single component ( M = 1 ) to learn the posterior distribution for this case. We have verified that 
using M > 1 does not improve the accuracy of our model’s point estimates, see Supplementary Material A 
for details. The MDN model for this dataset consists of a 1D CNN with four convolutional layers, two layers 
of bi-directional GRU network with 128 hidden states, and a Mixture Density Head (MDH). In the convo-
lutional part, we utilize 45, 35, 30, and 25 kernels for the first, second, third, and last layer, respectively, with 
kernel sizes 7, 5, 5, and 3, along with leaky-ReLU non-linearity with the negative-slope parameter 0.01 after 
each layer. For the MDH, as detailed in the previous section, we employ a feed-forward network without a 
hidden layer for the Gaussian center ( µ ) and mixture ( π ) predictions. Regarding the σ prediction, we use a 
feed-forward network with hidden layer sizes (300, ).

2.	 dataset B: This dataset assumes that the sample is composed of three distinct layers, each containing lithium 
(Li), carbon (C), oxygen (O), fluoride (F), and nickel (Ni). In total, there are 15 parameters that specify 
the thickness of each element within each layer. Notably, the number of Elemental Depth Profile (EDP) 
parameters in this dataset exceeds that of dataset A, signifying a higher level of complexity in this particular 
sample. To model the posterior distribution of the mapping x → y , our Mixture Density Network (MDN) 
employs 8 Gaussian components ( M = 8 ). In the Encoder Network (EN) segment, a Convolutional Neural 
Network (CNN) is utilized with 6 convolutional layers, featuring 55, 50, 45, 35, 30, and 25 channels, with 
kernel sizes of 15, 12, 10, 7, 5, and 3 for each respective layer. The stride alternates between 1 and 2, and no 
pooling operation is applied. The Gated Recurrent Unit (GRU) networks in the EN consist of 2 bidirectional 
GRU layers, each with 128 hidden states. In the Mixture Density Head (MDH) unit, a feed-forward network 
without a hidden layer is employed for the Gaussian center ( µ ). For the predictions of π and σ , feed-forward 
networks with hidden layer size of ( 100, ) and (800, ) are used, respectively.

3.	 dataset C: This dataset involves samples comprising five layers, each containing Lithium (Li), Carbon (C), 
Oxygen (O), Zirconium (Zr), Lanthanum (La), and Tantalum (Ta). In the first layer, aside from the mentioned 
elements, there are also Hydrogen (H), Carbon (C), and Cobalt (Co). Furthermore, in the last layer, Carbon 
(C) is absent. This dataset represents a scenario with a large number of EDP parameters (30 parameters) 
and a high degree of cross-section overlap. The MDN for this dataset assumes the same architecture as that 
used in dataset B. The difference is that now 10 Gaussian components ( M = 10 ) are used instead of 8.

The three datasets, in addition to having an increase in the number of EDP parameters, also exhibit an increase 
in the length of the region of interest (RoI). A region of interest (RoI) refers to specific segments of the RBS 
spectrum that are particularly relevant for extracting meaningful compositional information about the sample. 
In our case, the first 100 channels are excluded from the RoI due to their low information content. Furthermore, 
regions where counts are always zero under the variation of the EDP parameters are also excluded from the ROI. 
With this definition in mind, the RoI for data set A is determined to be between channels 100 and 800, result-
ing in an RoI length of 700. For data set B, the RoI spans from channels 320 to 1200 and 2420 to 2850, with a 
total RoI length of 1310. For data set C, the RoI ranges from channels 100 to 2300, giving an RoI length of 2200.

In Fig. 2, we present an RBS spectrum from a randomly chosen sample from data sets A, B, and C. We can 
observe that these three data sets also represent cases with increasing levels of ambiguity. For data set A, there 
is no backscattering from deuterium atoms in the sample, resulting in their absence in the spectra and thus no 
overlap occurs. Comparing the spectra from data set B (blue line) and data set C (green line), we clearly see that 
the peaks in the spectrum from data set B are more separated than those in data set C. In the spectrum from 
data set C, the region with channel numbers less than 850 shows the highest level of peak overlap, particularly 
from oxygen (O), tantalum (Ta), cobalt (Co), lanthanum (La), and zirconium (Zr).

Given the sample setups for the three data sets, we generate 100,000 instances for training. Additionally, we 
create 2000 test and 1000 validation data points to evaluate the performance of the trained model. Across all 
these datasets, the values of EDP parameters are uniformly distributed within the interval [50, 5000] atoms/cm2.

’
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Data preprocessing
Before being input into the training module, the training data undergoes dimensional reduction through several 
steps for improved model simplicity and faster training times. This reduction is implemented in the following 
manner: 

1.	 Bin-Merging: Initially, bin-merging is performed, where four bins are merged into a single bin. Given a spec-
trum length N and the length of the merged bins Nmerge , the final spectrum length after merging becomes 
⌈

N/Nmerge

⌉

.
2.	 Dimension Reduction based on Variance: Following bin-merging, portions of the spatially reduced spectrum 

with low variance counts are discarded. This step involves removing bins with counts that exhibit low vari-
ability across all training data. Specifically, a channel is identified as having low-variance counts if, across 
all training data, the standard deviation of the counts in that channel lies within the 95% percentile (3 σ ) of 
Poisson fluctuations of the mean data value. Thus, given the i-th bin, we remove this bin if 

 In this equation, Ndata represents the number of data points, Ck
i  is the count in the i-th bin for the k-th spec-

trum, and C̄i =
(
∑

k C
k
i

)

/Ndata is the mean count. Essentially, this method determines that if the count 
data in a bin i satisfy (15), then all the data in that bin are considered as random fluctuations from the same 
data, and consequently, the bin discarded. It’s important to note that this technique shares similarities with 
Principle Component Analysis (PCA). The primary distinction lies in the fact that PCA involves iterative 
rotations of the data (within the channel space) to maximize variance along newly rotated axes. In contrast, 
our approach refrains from using PCA to maintain the interpretability of the input channels.

3.	 Smoothing of Dimensionally Reduced Spectrum: Smoothing is a common preprocessing technique and 
used to remove noise and enhance the signal in spectral analysis30. To smooth the dimensionally reduced 
spectrum, noise suppression is applied using Savitzky–Golay filtering31.

4.	 Scaling: Finally, the spectrum and the target Elemental Depth Profiles (EDPs) are scaled using standard and 
min-max scaling respectively. Here, Standard scaling entails adjusting the spectrum based on its standard 
deviation, ensuring consistency and normalization across the data range. The min-max scaling rescale the 
EDPs to fit within the interval [0,1].

This series of steps in dimensional reduction and preprocessing aims to streamline the data and optimize it for 
more efficient and effective training of the machine learning models.

Results and discussion
In accordance with the methodology described in the preceding section, we executed the machine learning 
pipeline and conducted a comparison with automatic fit methods to evaluate the test data. All computations were 
performed on a PC running Windows 11, equipped with 128 GB of RAM, an AMD Ryzen Threadripper PRO 
5995WX CPU with 64 cores, and an Nvidia RTX A-4000 GPU. Specifically, the generation of training data and 
automatic fits occurred on the CPU, while both training and inference steps were executed on the GPU. Table 1 
displays the run times for both the machine learning pipeline and the inference process.

To systematically analyze the outcomes of the numerical experiment, we start by evaluating the accuracy of 
our model’s predictions. Subsequently, we present a comparative analysis between the results of the SIMNRA 
simulation using inputs from our model (back-simulation) and the outcomes of our goodness-of-fit test. We 
then discuss of the uncertainty predictions generated by our model. Finally, we explore a combined approach 
that proves superior to both machine learning (ML) and automatic fit methods.

Accuracy of the model predictions
The accuracy of the point estimate of EDP parameters, given by the expectation value 〈y〉 calculated using a pre-
dicted posterior distribution, can be evaluated by comparing the prediction to the corresponding target value. 
To quantify this, we use the absolute relative error:

(15)std(Ci) =
√

1

Ndata

∑

k

(

Ck
i − C̄i

)2 ≤ 3

√

C̄i

Table 1.   The runtime (in hours) for the machine learning pipeline, tasked with predicting D EDP parameters, 
is reported for datasets A, B, and C. The pipeline encompasses the generation of 103,000 spectra, a training 
process with 50,000 spectra, and testing and benchmarking using 2000 test data points.

Sample D Data generation (103k) Training (50k) Autofits (2k) ML + Autofits (2k)

Dataset A 4 0.1 0.5 1.5 1

Dataset B 15 0.5 0.75 15 5

Dataset C 30 0.5 0.75 30 9
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In Figs. 4 and 5, we present the median relative error (MRE) computed for 2000 test instances derived from 
datasets A and B, respectively, plotted against varying sizes of training data. Notably, in dataset A, we observe a 
remarkable convergence of the MREs to � 2% levels with a training size of 10,000. Beyond this point, the MREs 
stabilizes at approximately 0.8% as the training data size increases further. In contrast, the analysis of dataset B 
reveals a discernible elevation in the MRE compared to that observed in dataset A. This discrepancy is attributed 
to the intrinsic complexity of dataset B and the higher number of parameters being predicted. Nonetheless, even 
with a modest training size of 30,000, we achieve MRE values below 5% across all EDP parameters. Moreover, 
with a training set size of 50,000 or greater, the MREs can be further refined to � 3%.

Turning our attention to dataset C, which presents the most complex scenario, we examine Figs. 6 and 
7. These figures illustrate the MRE plotted against the training size for both the 15 best and worst predicted 
Elemental Depth Profile (EDP) parameters. Upon closer inspection, it becomes evident that only a select few 
EDP parameters, particularly those corresponding to layer 1, demonstrate MRE values of � 5% at the training 
size 50,000 or larger. Additionally, parameters pertaining to shallower layers seems to exhibit higher prediction 
accuracy compared to those from deeper layers. This observed trend can be attributed to the diminishing energy 
of back-scattered particles as we traverse deeper into the material. Consequently, the signals become increas-
ingly overlapped. This ambiguity ultimately leads to diminished accuracy in predicting parameters associated 
with deeper layers.

In summary, our model performs exceptionally well in terms of point estimates for datasets A and B. However, 
for dataset C, while it accurately predicts some EDP parameters, the accuracy exceeds 5% for the remaining 
parameters, even with a large number of training samples.

Autofits and goodness‑of‑fit test
Due to the ambiguous nature of the inverse mapping, sometimes two different sets of EDPs correspond to same 
input spectra. Thus, examining ground-truth relative error alone can be misleading. To assess the quality of the 

(16)ε =
∣

∣

∣

∣

prediction− target

target

∣

∣

∣

∣

Figure 4.   The median of relative error of the test data from dataset A as a function of the training data size.

Figure 5.   The median of relative error of the test data from dataset B as a function of the training data size.
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predicted EDPs, we therefore employ an additional metric, which is the χ2 of the resulting simulated spectrum, 
see (4) and the discussion in section “RBS simulation and automatic fit”.

In Table 2, we present the statistical profile of the observed χ2 values for the 2000 test data, obtained from 
our model trained with 10,000 (MDN10k), 50,000 (MDN50k), 100,000 (MDN100k) training samples. Addition-
ally, we also include the profile of the χ2 distribution with ν = 700 degrees of freedom, corresponding to the 
ideal case where the predicted EDPs coincide with the true EDPs used to generate the data (see discussion in 
section “RBS simulation and automatic fit”). Note that the number of degrees of freedom always coincides with 
the RoI length, which is 700 for data set A. For comparison, we also show the χ2 values from the Autofit method.

Looking at Table 2, as expected, using more training data improves the χ2 values. However, even with 100,000 
training data, our model cannot completely replicate the ideal χ2 distribution. In fact, using the previously 

Figure 6.   The median of relative error of the test data from dataset C as a function of the training data size for 
the 15 best predicted parameters.

Figure 7.   The median of relative error of the test data from dataset C as a function of the training data size for 
the 15 worst predicted parameters.

Table 2.   Statistical profile (percentiles, mean and standard deviation) of χ2 of the test data of dataset A, where 
the predicted EDPs are from the Autofit and our MDN trained with 10,000, 50,000, and 100,000 training data. 
Profile from an ideal χ2 distribution with ν degrees of freedom is also shown.

Method

Percentiles

Mean Std5th 10th 25th 50th 75th 90th 95th

MDN10k 667 686 725 801 1066 2722 3972 1308 1720

MDN50k 639 654 680 720 786 1213 2422 949 1058

MDN100k 636 651 677 712 765 995 1660 868 639

Autofit 626 640 667 707 1360 6083 15,380 5640 28,309

χ2
ν=700

640 652 674 699 725 748 763 700 37
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mentioned goodness-of-fit test, we can say that � 75% of the predicted EDPs from MDN50k are accepted. Now, 
looking at the χ2 from the Autofit, we can see that it aligns well with the χ2

ν=700 until roughly the 50th percentile. 
The χ2 values are also better than that from MDN. However, looking at the average and the spread, the χ2 values 
from the Autofit are much worse than even MDN10k. This comparison highlights the strengths and weaknesses 
of both methods: the Autofit, if it properly converges to a global minimum, performs exceptionally well. How-
ever, if convergence fails, the fitted EDPs may diverge significantly from the true values. In contrast, while our 
deep learning model has slightly worse performance than the converged automatic fit method, its performance 
is relatively consistent across all the test data.

Turning our focus to dataset B (with an RoI length of 1310), whose χ2 profile is reported in Table 3, we 
observe that the χ2 values from MDN50k and MDN100k are very good. Employing the same goodness-of-fit 
test as before, we find that around 75% of the predictions from these models are accepted. Comparing the results 
from Autofit and the MDNs, we see that Autofit performs better, with 90% of its predictions passing the test. 
However, the mean and spread of the χ2 values for Autofit predictions are much larger than those for the MDNs, 
indicating extreme outliers in less than 5% of the Autofit predictions.

Looking at Table 4 (with an RoI length of 2200), which displays the χ2 profile from dataset C, we observe 
significantly higher χ2 values than expected for both the MDN and Autofit methods. Even at lower χ2 percentiles, 
the predictions from these methods fail to meet the goodness-of-fit criteria. This underscores the challenges 
faced by both methods in inferring elemental depth profiles characterized by high complexity and ambiguity.

We note here that our Autofit implementation uses the Nelder–Mead minimizer, which is known to be inef-
ficient in high-dimensional spaces20. The failure of the Autofit method for dataset C may be attributed to the limi-
tation of the Maxfev=200× D stopping condition in the Nelder–Mead algorithm. In other words, a substantially 
higher number of χ2 function calls are necessary, which would consequently require longer computation times.

From Table 4, it is evident that the χ2 values obtained from the Autofit method are consistently better than 
those from our ML models. Dataset C thus exemplifies a case where the Autofit approach shines: whenever the 
degrees of ambiguity and complexity of the samples are high enough, directly minimizing the χ2 function, as in 
the Autofit approach, is a more effective method for achieving the lowest χ2 values compared to simply guess-
ing the global minimum of the χ2 function from the training data. This finding also serves as a cautionary note 
when interpreting previous machine learning studies8–11 on RBS spectra, which have shown promising results 
for machine learning approach but typically involve relatively simple sample structures (with fewer than 11 EDP 
parameters). Our study demonstrates that in cases of high complexity (measured in terms of the number of EDP 
parameters) and ambiguity (in terms of cross-section overlaps), conventional techniques such as Autofit, despite 
their slower nature, emerge as the superior option.

Our discussion here highlights the distinct performance characteristics of the Autofit and MDN models in 
reproducing ideal χ2 distributions. For a relatively simple to intermediate sample structures, while the Autofit 
excels under optimal convergence, the MDN models demonstrate more uniform performance across all the test 

Table 3.   Statistical profile (percentiles, mean and standard deviation) of χ2 of the test data of dataset B, where 
the predicted EDPs are from the automatic fit and our MDN trained with 10,000, 50,000, and 100,000 training 
data. Profile from an ideal χ2 distribution with ν degrees of freedom is also shown.

Method

Percentiles

Mean Std5th 10th 25th 50th 75th 90th 95th

MDN10k 1553 1671 1967 2486 3626 5214 7233 3250 2585

MDN50k 1097 1140 1214 1302 1391 1523 1651 1343 536

MDN100k 1091 1131 1208 1293 1389 1509 1630 1325 236

Autofit 1004 1048 1114 1199 1283 1358 1478 19,735 109,886

χ2
ν=1310

1227 1245 1275 1309 1344 1376 1395 1310 51

Table 4.   Statistical profile (percentiles, mean and standard deviation) of χ2 of the test data of dataset C, where 
the predicted EDPs are from the automatic fit and our MDN trained with 10,000, 50,000, and 100,000 training 
data. Profile from an ideal χ2 distribution with ν degrees of freedom is also shown.

Method

Percentiles

Mean Std5th 10th 25th 50th 75th 90th 95th

MDN10k 1.71e+4 2.26e+4 3.54e+4 6.84e+4 1.32e+5 2.48e+5 3.44e+5 1.15e+5 1.69e+5

MDN50k 6.43e+3 7.84e+3 1.35e+4 2.67e+4 5.76e+4 1.11e+5 1.64e+5 4.88e+4 6.58e+4

MDN100k 4.35e+3 5.12e+3 8.28e+3 1.87e+4 4.20e+4 8.80e+4 1.32e+5 3.65e+4 5.32e+4

Autofit 2.62e+3 2.77e+3 3.07e+3 3.62e+3 4.71e+3 7.38e+3 1.25e+4 7.23e+3 7.76e+4

χ2
ν=2200

2.09e+3 2.12e+3 2.16e+3 2.2+3 2.24e+3 2.29e+3 2.31e+3 2.20e+3 6.60e+1
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data. For the more complicated case represented by dataset C, Autofit outperforms the MDN models. However, 
challenges still persist for both approaches in achieving optimal χ2 values.

Uncertainty of predictions
In the introduction, we highlighted our primary motivation for opting for a probabilistic model over a simple 
regression model in IBA analysis: the ability to estimate the uncertainty of model predictions. As discussed 
in section “Methods”, given a posterior density p(y|x) , the uncertainty �yi associated with a point prediction 
ŷi = �yi� is computed as the standard deviation derived from the posterior, expressed as �yi =

√

�(yi − ŷi)2� . 
In this section, we discuss the accuracy of these uncertainty estimates.

Several techniques exist to gauge the accuracy of uncertainty estimates in reflecting true uncertainty. The 
concept of uncertainty calibration, as discussed in the literature (see for example32,33) is one such technique. In 
this work, however, we adopt more pragmatic approach by directly comparing the uncertainty prediction to the 
predictor systematic error, which is defined as the distance between the prediction and the target values. This 
approach provides a straightforward and intuitive means of assessing the reliability of our uncertainty estimates.

To assess how close is the uncertainty estimate to the predictor systematic error, we introduce the concept of 
average coverage score (ACS) Ŵi for the i-th EDP parameter as:

Here, the coverage score γ (k)
i  for the k-th data is defined as (the index k is suppressed)

where Ntest is the number of the test data, �yi represents the model’s uncertainty estimate for the i-th EDP 
parameter, and �yi,0 is the predictor systematic error, defined as:

where yi,0 denotes the target value for the EDP parameter yi.
Given an ACS value Ŵi , a negative ACS indicates an overall underestimation of predictor systematic errors, 

while a positive ACS suggests the opposite. This can be understood by looking at the extreme points of the 
individual coverage score. For instance, the value γi ≈ −1 represents an severe under-coverage (with true/target 
value lies outside of the the estimated error bars) such that �yi ≪ �yi,0 . Conversely, γi ≈ 1 represents severe 
over-coverage, as now �yi ≫ �yi,0.

While the ACS isn’t directly related to uncertainty calibration, it’s intriguing to determine the range of ACS 
values that would indicate a perfectly calibrated uncertainty. Establishing this range should provide clarity on 
what ACS values are considered “reasonable”. We note that an uncertainty estimate σp in the form of credibility 
interval at quantile p ∈ [0, 1] is said to be calibrated if the fraction of the number of instance of the interval 
covering the true values match the predicted probability, which is p, see32. Now, let’s suppose that the uncer-
tainty estimate �yi is associated with the q quantile of the distribution. In the case of a Gaussian posterior, the 
uncertainty estimate, defined by the variance of the distribution (as in our case), corresponds to q = 0.68 . If the 
uncertainty is perfectly calibrated at quantile q, there are a fraction q of over-coverage cases, or equivalently, 1− q 
under-coverage cases. Given that an under-coverage case is represented by γi ∈ [−1, 0] and an over-coverage 
case is represented by γi ∈ [0, 1] , the ACS value must satisfy:

Given q = 0.68 in our case, the range [-0.32, 0.68] thus defines a range of ACS values that we consider reasonable.
In Table 5, we show the ACS values and median relative error (MRE) for the test data from dataset A, B and 

C, focusing on two EDP parameters: one that corresponds to the best point-estimate accuracy (in terms of MRE) 
and the other exhibiting the worst accuracy. Note that we use our default model, MDN50k, from each dataset 
to generate both point and error bar predictions.

It is evident that the ACSs is positive for all test data across the three datasets, indicating an overall tendency 
for the uncertainty estimates to overestimate the predictor systematic error. Interestingly, we observe an inverse 
relationship between the ACS and the MRE. This observation hints at the possibility that the reduced ACS value 

(17)Ŵi =
1

Ntest

Ntest
∑

k

γ
(k)
i , −1 ≤ Ŵi ≤ 1

(18)γi =
�yi −�yi,0

�yi +�yi,0
, −1 ≤ γi ≤ 1

(19)�yi,0 = |ŷi − yi,0|

(20)q− 1 ≤ Ŵi ≤ q (If�yiis calibrated at quantile q)

Table 5.   The average coverage score (ACS) and the median relative error (MRE) values for test data from 
datasets A, B, and C for two selected EDP parameters that exhibit the highest and lowest point estimate 
accuracy.

Metric

Test Data A Test Data B Test Data C

W in Layer 1 D in Layer 1 Ni in Layer 1 F in Layer 3 La in Layer 1 H in Layer 1

ACS 0.330 0.272 0.251 0.208 0.261 0.162

MRE 0.0046 0.0087 0.0095 0.0306 0.0127 0.4016
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may stem from the increased magnitude of �yi,0 due to less accurate point estimates of the EDP parameters. 
Despite observing some variation in ACS values across the three datasets, they consistently fall within an accept-
able range in the sense of uncertainty calibration.

To visualize how well the error bars from the uncertainty estimates to encompass the target EDP parameter 
value from the test data, we define the prediction-to-target ratio and its uncertainty as follows:

Here, as before, ŷi and yi,0 represent the i-th predicted and target EDP parameters, respectively, while �yi denotes 
the uncertainty prediction for yi . By plotting Ri instead of yi , it is easy to compare the uncertainty across different 
points, as now the perfect point prediction corresponds to Ri = 1 for all values of EDP parameters.

In Figs. 8, 9, and 10, we present the ratio R for 150 randomly selected samples from the test data of datasets 
A, B, and C, respectively. Each figure includes an upper panel displaying the R ratio for the parameter with the 
best predicted values (i.e., the lowest MRE), while the bottom panel illustrates parameters corresponding to the 
largest MRE. The target values in all figures are sorted in ascending order.

Upon closer inspection of these figures, a discernible trend emerges: the size of the error bars generally 
decreases as the target values increase. This observation suggests that achieving accurate predictions for param-
eters with larger values is relatively more feasible compared to smaller ones. Furthermore, across all three datasets, 
the error bars predominantly envelop the ideal value ( R = 1 ), indicating an overall tendency for overestimation. 
However, this tendency is less pronounced for the H1 parameter in dataset C. This observation thus aligns well 
with their respective ACS values.

In conclusion, our analysis reveals insightful patterns regarding the accuracy and consistency of uncertainty 
estimates across different datasets. Despite minor overestimations observed, the overall performance demon-
strates the capability to encapsulate target EDP parameter values within the predicted error bars.

Combining deep learning and automatic fitting method
Our experiments with three datasets of varying complexities demonstrated that while our model performs well 
on datasets A and B, it still struggles to replicate the ideal χ2 distribution for the test data in dataset C. Observing 
that an automatic fitting method performs remarkably well when it converges to a global minimum suggests that 
a combined approach using MDN and automatic fitting-where the initial point of the automatic fit comes from 

(21)Ri =
ŷi

yi,0
, �Ri =

1

yi,0
�yi

Figure 8.   Prediction-to-target ratio for the 150 samples randomly chosen from the test data from dataset A. 
Following selection, these 150 samples are arranged in ascending order.

Figure 9.   Prediction-to-target ratio for the 150 samples randomly chosen from the test data from dataset B. 
Following selection, these 150 samples are arranged in ascending order.
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the MDN’s prediction-should theoretically lead to significantly improved model performance. In the context of 
automatic fitting, it also offers added advantage of reducing user intervention in providing an educated guess 
of the initial parameters.

We acknowledge that a similar combined approach was previously employed in34, albeit without a comparative 
analysis against the standard Autofit or machine learning methods. In this section, we will focus on comparing 
the performance of the individual MDN and Autofit methods with the combined approach.

In Table 6, we present the statistical profiles of χ2 for 2000 test data points from datasets A, B, and C. For these 
datasets, the EDP parameters were predicted using a combined MDN+Autofit method. The MDN was trained 
on 50,000 training data samples for each dataset, while the Autofits were performed with a quarter of the Maxfev 
used in our standard Autofit method. This means that Maxfev is set to 50× D , where D is the number of EDP 
parameters. The rationale behind reducing the Maxfev values is that the ML approach should already provide a 
good starting point for the Autofits, thus warranting a decrease in Maxfev.

Upon analyzing Table 6, it is evident that the resulting χ2 values are lower than those obtained using both the 
Autofit and MDN methods, indicating that the combined method outperforms both. Regarding the goodness-
of-fit (GoF) test, we observe that for datasets A and B, over 95% of predictions satisfy the criteria, marking a 
substantial enhancement over the individual methods where only around 75% of test cases are deemed acceptable. 
In dataset C, now 10% of test cases fulfill the GoF criteria. This is an improvement, as nearly all predictions for 
the test data fail to meet the criteria before.

Analyzing the runtime of this combined method in Table 1, we find that it requires less computing time than 
the standard Autofit method. For datasets B and C, the runtimes are roughly one third of those from the stand-
ard Autofit method. This underscores the superiority of this method in terms of both accuracy and efficiency.

Conclusions
In this study, we utilized a mixture density network (MDN) architecture, consisting of a convolutional neural 
network (CNN), a gated recurrent unit (GRU) as the encoder network (EN), and a multilayer perceptron (MLP) 
as the mixture density head, to predict the posterior distribution of elemental depth profile parameters (EDPs) 
from input spectra. Training was conducted on three datasets of varying complexities: dataset A (4 EDP param-
eters), dataset B (15 EDP parameters), and dataset C (30 EDP parameters). While our machine learning (ML) 
approach generally yielded similar accuracy metrics to the standard Autofit method for datasets A and B, Autofit 
significantly outperformed the MDN model for dataset C, highlighting the need for caution when applying ML 
approaches to complex sample structures. Additionally, we explored a combined ML+Autofit approach, which 
yielded significant enhancements in the χ2 distribution of test data compared to both approaches while requiring 
fewer computational resources than Autofit.

Figure 10.   Prediction-to-target ratio for the 150 samples randomly chosen from the test data from dataset C. 
Following selection, these 150 samples are arranged in ascending order.

Table 6.   Statistical profile (percentiles, mean and standard deviation) of χ2 of the test data of dataset A, B and 
C, obtained using MDN50k+Autofit method.

Method

Percentiles

Mean Std5th 10th 25th 50th 75th 90th 95th

χ2
ν=700

640 652 674 699 725 748 763 700 37

Dataset A 619 630 652 678 705 733 753 695 187

χ2
ν=1310

1227 1245 1275 1309 1344 1376 1395 1310 51

Dataset B 988 1035 1111 1190 1272 1328 1361 1187 115

χ2
ν=2200

2092 2115 2155 2199 2244 2285 2310 2200 66

Dataset C 2260 2311 2433 2627 2987 3758 4880 3051 2015
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Given that this work utilizes simulated spectra, it is anticipated that the accuracy of predictions may decline 
when applied to real experimental spectra. However, previous studies have demonstrated that using simulated 
spectra for training data can yield promising results when extrapolated to experimental datasets, suggesting 
that this trend may hold true for our study as well. It is also important to acknowledge that our method relies on 
SIMNRA to generate training data, which depends on fundamental databases such as cross-section and stopping 
power. Consequently, any predictions made by our machine learning model will inherently reflect the uncer-
tainties present in these fundamental databases. Despite these challenges, the success of previous studies using 
similar methodologies and the robustness of fundamental databases suggest that our approach holds promise 
for real-world applications, provided appropriate considerations and validations are undertaken.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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