001     1034617
005     20250110192855.0
024 7 _ |a 10.34734/FZJ-2024-07378
|2 datacite_doi
037 _ _ |a FZJ-2024-07378
041 _ _ |a English
100 1 _ |a Langguth, Michael
|0 P:(DE-Juel1)180790
|b 0
|e Corresponding author
|u fzj
111 2 _ |a International Conference on Learning Representations
|g ICLR 2024
|c Vienna
|d 2024-05-07 - 2024-05-11
|w Austria
245 _ _ |a A Benchmark Dataset for Meteorological Downscaling
260 _ _ |c 2024
300 _ _ |a N/A
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1736508438_6156
|2 PUB:(DE-HGF)
520 _ _ |a High spatial resolution in atmospheric representations is crucial across Earth science domains, but global reanalysis datasets like ERA5 often lack the detail to capture local phenomena due to their coarse resolution. Recent efforts have leveraged deep neural networks from computer vision to enhance the spatial resolution of meteorological data, showing promise for statistical downscaling. However, methodological diversity and insufficient comparisons with traditional downscaling techniques challenge these advancements. Our study introduces a benchmark dataset for statistical downscaling, utilizing ERA5 and the finer-resolution COSMO-REA6, to facilitate direct comparisons of downscaling methods for 2m temperature, global (solar) irradiance and 100m wind fields. Accompanying U-Net, GAN, and transformer models with a suite of evaluation metrics aim to standardize assessments and promote transparency and confidence in applying deep learning to meteorological downscaling.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a MAELSTROM - MAchinE Learning for Scalable meTeoROlogy and cliMate (955513)
|0 G:(EU-Grant)955513
|c 955513
|f H2020-JTI-EuroHPC-2019-1
|x 1
536 _ _ |a Verbundprojekt: MAELSTROM - Skalierbarkeit von Anwendungen des Maschinellen Lernens in den Bereichen Wetter und Klimawissenschaften für das zukünftige Supercomputing (16HPC029)
|0 G:(BMBF)16HPC029
|c 16HPC029
|x 2
536 _ _ |a Earth System Data Exploration (ESDE)
|0 G:(DE-Juel-1)ESDE
|c ESDE
|x 3
700 1 _ |a Harder, Paula
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schicker, Irene
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Patnala, Ankit
|0 P:(DE-Juel1)186635
|b 3
|u fzj
700 1 _ |a Lehner, Sebastian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Dabernig, Markus
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mayer, Konrad
|0 P:(DE-HGF)0
|b 6
856 4 _ |u https://www.climatechange.ai/papers/iclr2024/71
856 4 _ |u https://juser.fz-juelich.de/record/1034617/files/paper.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1034617
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180790
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)186635
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21