001 | 1034617 | ||
005 | 20250110192855.0 | ||
024 | 7 | _ | |a 10.34734/FZJ-2024-07378 |2 datacite_doi |
037 | _ | _ | |a FZJ-2024-07378 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Langguth, Michael |0 P:(DE-Juel1)180790 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a International Conference on Learning Representations |g ICLR 2024 |c Vienna |d 2024-05-07 - 2024-05-11 |w Austria |
245 | _ | _ | |a A Benchmark Dataset for Meteorological Downscaling |
260 | _ | _ | |c 2024 |
300 | _ | _ | |a N/A |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1736508438_6156 |2 PUB:(DE-HGF) |
520 | _ | _ | |a High spatial resolution in atmospheric representations is crucial across Earth science domains, but global reanalysis datasets like ERA5 often lack the detail to capture local phenomena due to their coarse resolution. Recent efforts have leveraged deep neural networks from computer vision to enhance the spatial resolution of meteorological data, showing promise for statistical downscaling. However, methodological diversity and insufficient comparisons with traditional downscaling techniques challenge these advancements. Our study introduces a benchmark dataset for statistical downscaling, utilizing ERA5 and the finer-resolution COSMO-REA6, to facilitate direct comparisons of downscaling methods for 2m temperature, global (solar) irradiance and 100m wind fields. Accompanying U-Net, GAN, and transformer models with a suite of evaluation metrics aim to standardize assessments and promote transparency and confidence in applying deep learning to meteorological downscaling. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a MAELSTROM - MAchinE Learning for Scalable meTeoROlogy and cliMate (955513) |0 G:(EU-Grant)955513 |c 955513 |f H2020-JTI-EuroHPC-2019-1 |x 1 |
536 | _ | _ | |a Verbundprojekt: MAELSTROM - Skalierbarkeit von Anwendungen des Maschinellen Lernens in den Bereichen Wetter und Klimawissenschaften für das zukünftige Supercomputing (16HPC029) |0 G:(BMBF)16HPC029 |c 16HPC029 |x 2 |
536 | _ | _ | |a Earth System Data Exploration (ESDE) |0 G:(DE-Juel-1)ESDE |c ESDE |x 3 |
700 | 1 | _ | |a Harder, Paula |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Schicker, Irene |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Patnala, Ankit |0 P:(DE-Juel1)186635 |b 3 |u fzj |
700 | 1 | _ | |a Lehner, Sebastian |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Dabernig, Markus |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Mayer, Konrad |0 P:(DE-HGF)0 |b 6 |
856 | 4 | _ | |u https://www.climatechange.ai/papers/iclr2024/71 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1034617/files/paper.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1034617 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)180790 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)186635 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|