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ABSTRACT

High spatial resolution in atmospheric representations is crucial across Earth sci-
ence domains, but global reanalysis datasets like ERA5 often lack the detail to
capture local phenomena due to their coarse resolution. Recent efforts have lever-
aged deep neural networks from computer vision to enhance the spatial resolution
of meteorological data, showing promise for statistical downscaling. However,
methodological diversity and insufficient comparisons with traditional downscal-
ing techniques challenge these advancements. Our study introduces a bench-
mark dataset for statistical downscaling, utilizing ERA5 and the finer-resolution
COSMO-REA6, to facilitate direct comparisons of downscaling methods for 2m
temperature, global (solar) irradiance and 100m wind fields. Accompanying U-
Net, GAN, and transformer models with a suite of evaluation metrics aim to stan-
dardize assessments and promote transparency and confidence in applying deep
learning to meteorological downscaling.

1 INTRODUCTION
Addressing climate change effectively requires accurate observation and modeling of weather and
climate, including high-resolution data that is crucial for both understanding global climate patterns
and supporting the transition towards renewable energy. The goal of achieving a fossil fuel-free sta-
tus by 2040 emphasizes the urgency of shifting to renewable sources such as wind and photovoltaic
(PV) production. This transition is not only a response to the imperative of climate change mitiga-
tion but also a strategic move to ensure energy security and sustainability. As such, localized and
regional forecasts play a pivotal role in guiding adaptation strategies, influencing decisions across
various sectors including agriculture, energy, and transportation, and specifically in planning the
construction of new wind and PV power plant sites. Here, downscaling in climate science, simi-
lar to super-resolution in computer vision, offers an efficient method to infer local, high-resolution
quantities from the coarser scale variables. This technique is of utmost importance for assessing re-
newable energy resources, like wind speed at a currently prominent hub height of 100 m and global
solar radiation, and their possible changes with climate change.

There exists a rapidly growing number of deep learning (DL) approaches tackling downscaling of
a variety of meteorological variables, across different scales and regions. Following the state-of-
the-art in super-resolution, there are impressive results from methods like CNNs [33], GANs [30],
diffusion-based models [21], or foundation models [23] in downscaling. Intercomparison though is
hard, given that the metrics, baselines, and datasets used vary almost among all approaches.
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Figure 1: Target domain for downscaling depicted in black in the COSMO-REA6 projection.

Benchmark datasets like WeatherBench [26] or ClimateBench [35] have helped to improve and
unify fields like DL for weather forecasts or climate projections. The field of deep learning for
downscaling though is still lacking a dataset and framework to compare and benchmark promising
architectures. A downscaling benchmark dataset will aid both research and deployment. It pro-
vides an useful and carefully designed test setup for ML researchers and developers aiming to craft
novel neural network architectures. This will give an insight of the most promising models to the
researchers working on real-world applications of downscaling.

The repository can be found at https://github.com/mlangguth89/downscaling_
benchmark.

2 THE DOWNSCALING BENCHMARK DATASET
In the following, the design and principles of the benchmark dataset for statistical downscaling are
outlined. With the ambition to provide a benchmark dataset that is usable and practical for the sci-
entific community, we closely follow the recipe to build proper benchmark datasets for Atmospheric
Sciences as provided by [7].

2.1 DOWNSCALING TASKS AND DATA
The benchmark dataset comprises three downscaling tasks for the generation of high-resolved data
fields of 2m temperature, 100m-wind, and global horizontal irradiance generated from a coarse-
grained set of predictor variables.

Reanalysis datasets are well suited for this purpose since they provide a comprehensive, consistent,
and quality-controlled database. The global ERA5 reanalysis dataset [14], is chosen as the coarse-
grained input for our downscaling task. Its spatio-temporal coverage (global, 1940 to near present),
however, restricts its spatial resolution to a 0.25°-grid and thus barely represents the spatial variabil-
ity over complex terrain. The regional COSMO-REA6 reanalysis dataset [3], in contrast, can depict
the spatial variability in meteorological fields in more detail.

The added value due to the 4-5 times finer grid (∆x ≃ 6 km) of the COSMO-REA6 data has been
verified in various studies, in particular for temperature [27], solar irradiance [24; 25] and wind
fields [24; 17; 4; 28; 25] over complex terrain. While the original COSMO-REA6 reanalysis pro-
vides high-quality (target) data for 2m temperature and 100m wind, we make use of a postprocessed
COSMO-REA6 product for global horizontal irradiance [9]. As demonstrated in [9], the postpro-
cessing reduces biases in the existing original reanalysis dataset, significantly enhancing its accuracy
for PV power generation applications.

Since the added value of COSMO-REA6 is most pronounced over complex terrain, the target domain
for the downscaling tasks is confined to Central Europe including the Alpine region. The domain
comprises 144x128 grid points in (rotated) latitude and longitude direction is depicted in Fig. 1. In
addition to the complex terrain of the Alpine region, the target domain covers relevant regions for
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the production of renewable energy in Central Europe. In particular, Southern Germany provides
the major contribution to the national PV power generation (see Fig. 2 in [6]). While PV power
generation is also a relevant driver for Austria’s transition to renewable energy, several wind power
farms are included in the target domain within complex terrain. Fostering wind energy production
in Southern Germany and Austria is furthermore considered to be a necessary prerequisite to realize
the zero-net target in energy production of both countries by 2045 [10; 11; 16; 22; 8].

The set of predictor variables as listed in the appendix (see Section A.1) for the three downscaling
tasks have been chosen with the help of domain knowledge. To ease the reconstruction of high-
resolution features from the coarse-grained ERA5-data, temperature and wind data from several
model levels are included for the respective downscaling task. Further predictor variables are cho-
sen to encode relevant processes in the planetary boundary layer that ultimately drive the spatial
variability or to provide relevant information on the attenuance of solar radiation within the atmo-
sphere (i.e. cloud-related predictors).

Easy access to the prepared datasets is realized with the help of a CliMetLab plugin, a Python
package to enable easy downloading of meteorological data developed by ECMWF. As illustrated
in Fig. 2, downloading the dataset for a specific downscaling task from the s3 bucket system of the
European Weather Cloud is realized with a few lines of Python code. Noteworthy, the provided
datasets are ready-to-use and no expert knowledge of data handling is required for its usage. All
necessary steps of preprocessing (e.g. re-projecting the ERA5-data onto the rotated pole grid of
COSMO-REA6) and data pairing have been accomplished with the provision of the data via the
CliMetLab plugin.

2.2 BASELINE DOWNSCALING MODELS

A set of deep neural network architectures described in the literature is chosen to enable system-
atic benchmarking against baseline solutions. Since statistical downscaling has a long tradition in
statistics for atmospheric science [20], this set is complemented by an advanced approach based on
classical model output statistics. A brief summary of the baseline models is provided subsequently:

Deep Learning Models Convolutional neural networks (ConvNets) have been applied in numer-
ous studies for statistical downscaling [32; 2; 1; 34]. In particular, the U-Net architecture, a variant
of hierarchical ConvNets, is known for its ability to effectively combine high-level context with
detailed local information which is considered to be highly relevant for downscaling tasks. Here,
we choose the DeepRU-architecture [15] and the U-Net suggested in [29] (Sha U-Net) as two rep-
resentative models for the family of ConvNets. More recently, conditional Generative Adversarial
Networks (GANs) have become popular due to their capability to reconstruct small-scale features.
GANs combine two neural networks, a generator and a discriminator model, to efficiently learn the
statistical properties of the ground truth with the help of adversarial optimization. Two so-called
Wasserstein GANs (WGANs), where the discriminator is replaced by a critic model, are chosen as
baseline models for this benchmark, that are the WGAN suggested by [13] and a WGAN model that
deploys the Sha U-Net as the generator (Sha WGAN). Furthermore, we adapt the SwinIR as a novel
vision transformer based on Swin transformer[19], that showed promise in super-resolution tasks of
computer vision [18].

SAMOS - Standardized Anomaly Model Output Statistics SAMOS [5] is a statistical post-
processing method based on the idea of ensemble model output statistics [12]. Instead of using
real/normalized input and output pairs, SAMOS uses a mixture of classical statistics with machine
learning through gradient boosting providing both deterministic and if wanted, probabilistic fore-
casts. By removing local information and fitting towards a climatology, standardized anomalies are
attained that allow global optimization for all data points of the downscaling domain.

2.3 PERFORMANCE EVALUATION
Choosing the right evaluation setup for a benchmark dataset is crucial. Here, we include a variety
of downscaling metrics such as the RMSE, the Mean Error of local Standard Deviation [37], and
the Integrated Quadratic Distance [31], alongside advanced visual analyses like conditional quantile
plots. Depending on the variable evaluated, there exist different sets of metrics, e.g. for wind, we
additionally include the cosine dissimilarity score, the vector RMSE, and magnitude difference as
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suggested in [15]. In addition to standard metrics, we provide diagnostics for the marginal distri-
bution of the target variable, e.g. power spectra analysis and histograms. The evaluation of global
irradiance mirrors that of 2-meter temperature but emphasizes relative errors to account for diurnal
and seasonal cycles, incorporating daily sums and hit-miss rates as well as the proposed verification
scores by [36].

Our evaluation setup consists of two steps: single model evaluation for all task-specific metrics
followed by a comparison to a reference model using skill scores. Fig. 3a-c in the appendix ex-
emplifies preliminary results of the Sha WGAN and additionally compares three baseline models
against a simple bilinear interpolation as a baseline solution (Fig. 3d).

3 CONCLUSION

With this work, we introduce a benchmark dataset tailored for statistical downscaling of meteorolog-
ical fields. Our dataset is readily accessible, eliminating the need for extensive preprocessing (e.g.
data pairing) by application developers. Moreover, the benchmark enables comparison against ex-
isting baseline solutions including both standard deep learning solutions, such as U-Nets, WGANs
and vision transformers, and the classical competitor method SAMOS. By providing a well-defined
evaluation framework, developed solutions can be analyzed in detail to identify optimal strategies
for statistical downscaling. Such a framework does not only foster advancements in research, but
can also be used to facilitate the operational deployment of statistical downscaling models. We
anticipate that the availability of benchmark datasets will accelerate progress statistical downscal-
ing of meteorological fields, leading to improved accuracy, reliability and trustworthiness in deep
learning-based solutions.
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PERPIÑÁN-LAMIGUEIRO, O., PETERS, I. M., REIKARD, G., RENNÉ, D., SAINT-DRENAN,
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A APPENDIX

A.1 PREDICTOR VARIABLES

2m temperature downscaling task :

• 2m temperature
• temperature at model levels [137, 135, 131, 127, 122, 115]
• 10m (u,v)-wind components
• surface latent and sensible heat flux
• surface pressure
• static predictors: coarse and high-resolved surface topography and land-sea mask

100m wind downscaling task :

• 100m (u,v)-wind components
• (u,v)-wind components at model levels [137, 135, 131, 127, 122, 115]
• boundary layer height
• geopotential at 500 hPa
• static predictors: coarse and high-resolved surface topography and land-sea mask

Solar Irradiance: :

• Surface net solar radiation
• Top net solar radiation
• Low, medium and high cloud cover
• Total column cloud liquid water
• Total precipitation
• Convective available potential energy
• Surface pressure
• Slope of sub-gridscale orography
• Cloud base height
• Evaporation
• Static predictors: topography, land-sea mask
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A.2 FIGURES

Figure 2: Exemplary Python code snippet to download the validation dataset of the 2m temperature
downscaling task with the ClimMetLab plugin. The data is stored in a netCDF-file on disk with the
help of xarray.

Figure 3: Example evaluation results from the Sha WGAN on the 2m temperature downscaling task.
The diurnal cycle of RMSE is evaluated for the whole test year 2018 (a), for a specific season such
as spring (b), or the RMSE can be analysed spatially for a specific season and daytime (c). (d)
provides an intercomparison in terms of the Skill RMSE between the Sha U-Net, the Sha WGAN,
the DeepRU and the SwinIR with bilinear interpolation as the reference downscaling approach. The
bilinear reference will be replaced by SAMOS in the future.
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