001     1034626
005     20250110192855.0
024 7 _ |a 10.34734/FZJ-2024-07387
|2 datacite_doi
037 _ _ |a FZJ-2024-07387
041 _ _ |a English
100 1 _ |a Langguth, Michael
|0 P:(DE-Juel1)180790
|b 0
|e Corresponding author
111 2 _ |a Workshop on Large-Scale Deep Learning for the Earth System
|g LSDL4ES 2024
|c Bonn
|d 2024-08-29 - 2024-08-30
|w Germany
245 _ _ |a DownscaleBench: A benchmark dataset for statisticaldownscaling of meteorological fields
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1736508388_6153
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a Statistical downscaling with deep neural networks has recently gained a lot of momentum in the meteorological community. While several studies show promising results, direct comparison between different approaches is often impeded due to a large variety in the related downscaling task (target quantity), the deployed dataset and the evaluation framework. Furthermore, the performance of deep neural networks for statistical downscaling is barely compared to classical downscaling methods that have been established in the meteorological domain over the last decades. To enable fair comparison between different downscaling techniques, we suggest DownscaleBench, a benchmark dataset based on the coarse-grained ERA5 and the high-resolved COSMO REA6-dataset. DownscaleBench provides a standardized set of predictors for three (deterministic) downscaling tasks, that are downscaling of 2m temperature, 100m wind and solar irradiance. The ready-to-use datasets are complemented by a set of baseline models (standard deep neural networks and a classical method) whose performance is accessed in a task-specific, but standardized evaluation framework.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a MAELSTROM - MAchinE Learning for Scalable meTeoROlogy and cliMate (955513)
|0 G:(EU-Grant)955513
|c 955513
|f H2020-JTI-EuroHPC-2019-1
|x 1
536 _ _ |a Verbundprojekt: MAELSTROM - Skalierbarkeit von Anwendungen des Maschinellen Lernens in den Bereichen Wetter und Klimawissenschaften für das zukünftige Supercomputing (16HPC029)
|0 G:(BMBF)16HPC029
|c 16HPC029
|x 2
536 _ _ |a Earth System Data Exploration (ESDE)
|0 G:(DE-Juel-1)ESDE
|c ESDE
|x 3
700 1 _ |a Lehner, Sebastian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Harder, Paula
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Patnala, Ankit
|0 P:(DE-Juel1)186635
|b 3
700 1 _ |a Schicker, Irene
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Dabernig, Markus
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schultz, Martin
|0 P:(DE-Juel1)6952
|b 6
|u fzj
856 4 _ |u https://cesoc.net/lsdles-workshop-abstracts/#:~:text=DownscaleBench%3A%20A%20benchmark%20dataset%20for%20statistical%20downscaling%20of%20meteorological%20fields
856 4 _ |u https://juser.fz-juelich.de/record/1034626/files/Langguth_DownscleBench_LSDLES_2024-08-29.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1034626
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180790
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)186635
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)6952
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21