

DownscaleBench: A benchmark dataset for statistical downscaling of meteorological fields

Workshop on Large-Scale Deep Learning for the Earth System | Bonn

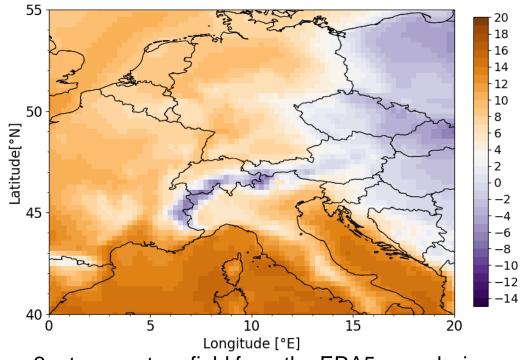
2024-08-29 I **MICHAEL LANGGUTH**¹, SEBASTIAN LEHNER², PAULA HARDER³, ANKIT PATNALA¹, IRENE SCHICKER², MARKUS DABERNIG², MARTIN G. SCHULTZ¹

¹ Juelich Supercomputing Centre (JSC), ² Geosphere Austria, ³ Mila Quebec Al Institute

"The MAELSTROM project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955513. The JU receives support from the European Union's Horizon 2020 research and innovation programme and United Kingdom, Germany, Italy, Luxembourg, Switzerland, Norway".

Why do we need a benchmark dataset?

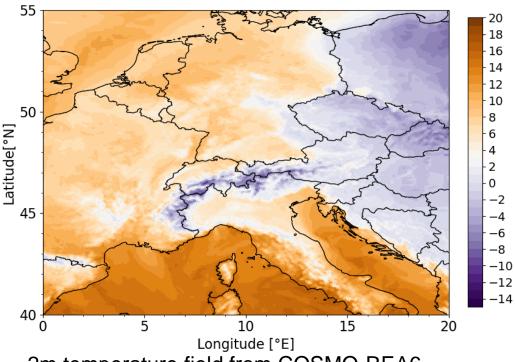
- High-resolved weather data is crucially demanded
- Recent success of deep learning for statistical downscaling (e.g. *Mardani et al., 2023*, Harder et al., 2023, Harris et al., 2022)
- Intercomparison difficult:
 - Variety of downscaling tasks
 - Different datasets
 - Different evaluation methods
- Benchmark datasets steer progress in AI, e.g.
 ImageNet (Deng et al., 2009), GLUE (Wang et al., 2018)
- For meteorological applications, benchmarks such as WeatherBench 2 (*Rasp et al., 2023*) are rare



2m temperature field from the ERA5-reanalysis ($\Delta x = 0.25^{\circ}$) on 2018-12-01,13:00 CET.

Why do we need a benchmark dataset?

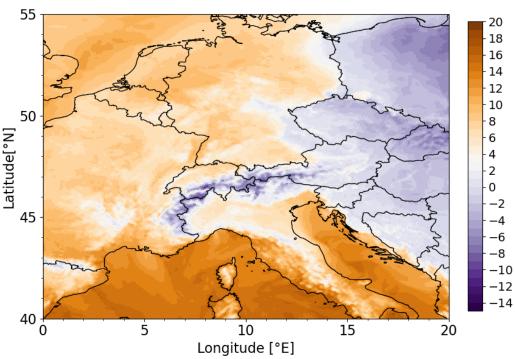
- High-resolved weather data is crucially demanded
- Recent success of deep learning for statistical downscaling (e.g. *Mardani et al., 2023*, Harder et al., 2023, Harris et al., 2022)
- Intercomparison difficult:
 - Variety of downscaling tasks
 - Different datasets
 - Different evaluation methods
- Benchmark datasets steer progress in AI, e.g.
 ImageNet (Deng et al., 2009), GLUE (Wang et al., 2018)
- For meteorological applications, benchmarks such as WeatherBench 2 (*Rasp et al., 2023*) are rare



2m temperature field from COSMO-REA6 ($\Delta x = 0.055^{\circ}$) on 2018-12-01,13:00 CET.

Why do we need a benchmark dataset?

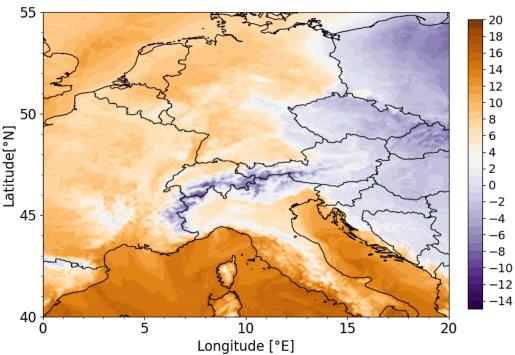
- High-resolved weather data is crucially demanded
- Recent success of deep learning for statistical downscaling (e.g. Mardani et al., 2023, A benchmark dataset Harder et al., 2023, Harris et al., 2022 to steer progress in
- Intercomparison difficult:
 - Variety of downscaling t
 - Different datasets
 - Different eval
- statistical downscaling Benchmark datas ın Al, e.g. ImageNet (Deng e. 4 LUE (*Wang et al., 2018*)
- For meteorological a meations, benchmarks such as WeatherBench 2 (Rasp et al., 2023) are rare



2m temperature field from COSMO-REA6 $(\Delta x = 0.055^{\circ})$ on 2018-12-01,13:00 CET.

Why do we need a benchmark dataset?

- High-resolved weather data is crucially demanded
- Recent success of deep learning for statistical downscaling (e.g. Mardani et al., 2023, Details and results
 are preliminary Harder et al., 2023, Harris et al., 2022
- Intercomparison difficult:
 - Variety of downscaling to
 - Different datasets
 - Different eval
- Benchmark datas ın Al, e.g. ImageNet (Deng e LUE (*Wang et al., 2018*)
- For meteorological a ations, benchmarks such as WeatherBench 2 (Rasp et al., 2023) are rare



2m temperature field from COSMO-REA6 $(\Delta x = 0.055^{\circ})$ on 2018-12-01,13:00 CET.

Design choices and components of the benchmark dataset

- Benchmark dataset closely follows requirements listed in Dueben et al., 2022
 - 1) Clear problem statement for real-life task
 - 2) Open data provision in high-level programming language
 - 3) Results and code of baseline competitor models
 - 4) Evaluation metrics defined
 - 5) Visualization and diagnostics in code

Design choices and components of the benchmark dataset

- Benchmark dataset closely follows requirements listed in *Dueben et al., 2022*
 - 1) Clear problem statement for real-life task
 - 2) Open data provision in high-level programming language
 - 3) Results and code of baseline competitor models
 - Evaluation metrics defined
 - 5) Visualization and diagnostics in code

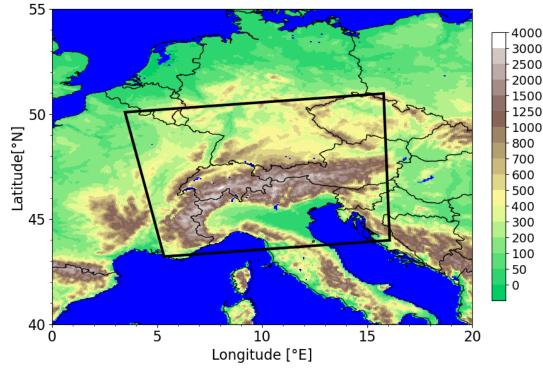
1) Downscaling task(-s):

Emulate a high-resolved reanalysis (COSMO REA6) of i) **2m temperature**, ii) **100m wind** and iii) **global horizontal irradiance** from the ERA5-reanalysis

Design choices and components of the benchmark dataset

2) The data:

- Predictands from COSMO-REA6 data $(\Delta x_{CREA6}^{rot} = 0.055^{\circ})$
- Task-specific set of predictor variables from the ERA5-reanalysis dataset ($\Delta x_{ERA5} = 0.25^{\circ}$)
- Ready-to-use dataset provided via <u>climetlab-plugin</u>
- Exemplary data pipelines for TensorFlow and PyTorch in code base



Surface topography form COSMO REA6. The target domain of the downscaling benchmark comprises 144x128 grid points and is rendered.

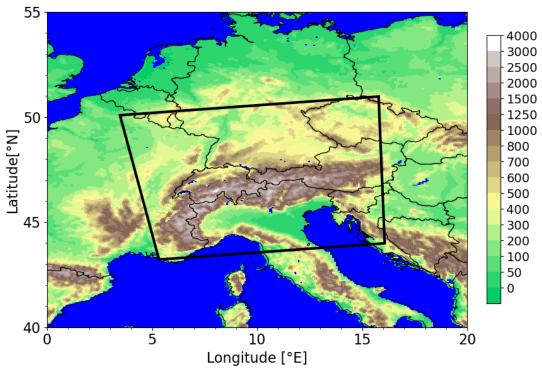
Design choices and components of the benchmark dataset

2) The data:

- Predictands from COSMO-REA6 data $(\Delta x_{CREA6}^{rot} = 0.055^{\circ})$
- Task-specific set of predictor variables from the ERA5-reanalysis dataset ($\Delta x_{ERA5} = 0.25^{\circ}$)
- Ready-to-use dataset provided via <u>climetlab-plugin</u>
- Exemplary data pipelines for TensorFlow and PyTorch in code base

```
!pip install climetlab climetlab_downscaling_benchmark
import climetlab as cml
cml_ds = cml.load_dataset("t2m_downscaling", dataset="validation")

ds = cml_ds.to_xarray()
ds.to_netcdf("downscaling_benchmark_t2m_val.nc")
```



Surface topography form COSMO REA6. The target domain of the downscaling benchmark comprises 144x128 grid points and is rendered.

Design choices and components of the benchmark dataset

3) Baseline competitor models

- a) Deep neural networks:
 - U-Net by Sha et al., 2020 (tuned)
 - DeepRU (U-Net variant) by Höhlein et al., 2020
 - WGAN with U-Net by Sha as generator
 - WGAN by Harris et al., 2022
 - SwinIR by Liang et al., 2021
- b) Classical statistical model:
 - Standardized Anomaly MOS (SAMOS)
 by Dabernig, 2017

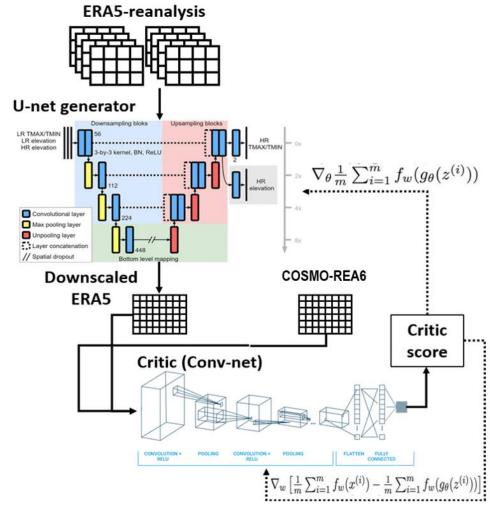


Illustration of the WGAN with the U-Net by Sha et al. (2020) as generator.

Design choices and components of the benchmark dataset

4&5) Evaluation metrics and diagnostics

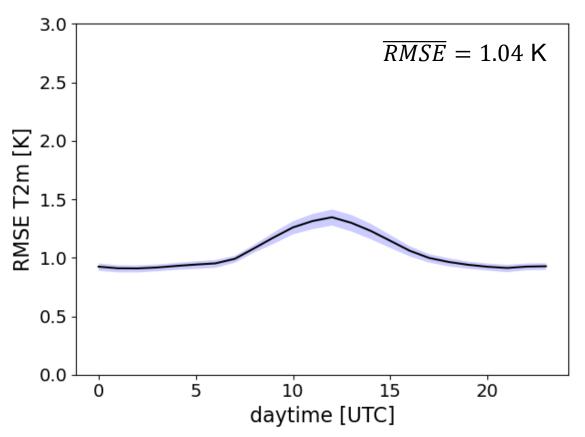
Aim: Standardized evaluation framework

- Set of (task-specific) evaluation metrics
- Diagnostics for marginal distribution, e.g. power spectra analysis
- Various plot products for detailed analysis
- Two postprocessing steps:
 - 1) Single model evaluation (script-based) → prerequisite: results in netCDF-file
 - 2) Inter-comparison between various models (Jupyter Notebook)

EVALUATION FRAMEWORK

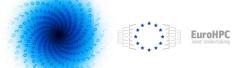
Examples from single model evaluation (T2m downscaling)

Results from **Sha WGAN**



Better

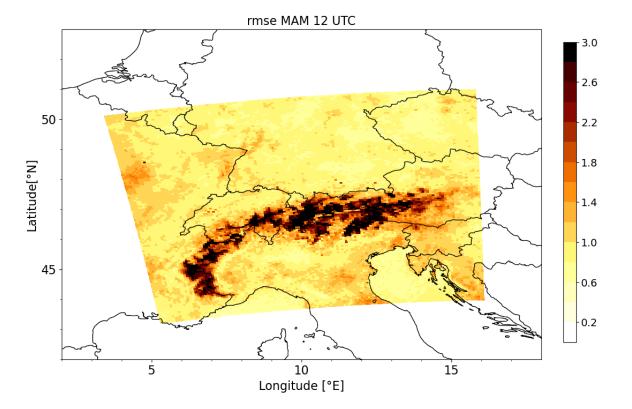
Averaged metrics plotted against daytime (seasonal evaluation possible!)



EVALUATION FRAMEWORK

Examples from single model evaluation (T2m downscaling)

Results from **Sha WGAN**

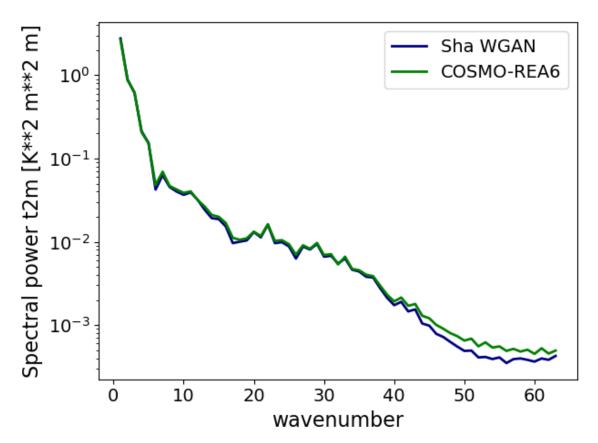


Season-wise spatial evaluation, e.g. RMSE for spring months MAM, or ...

POSTPROCESSING – SINGLE MODEL EVALUATION

Examples from the 2m temperature downscaling task

Results from **Sha WGAN**

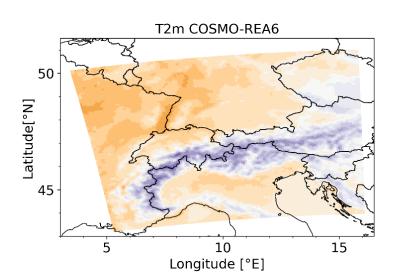


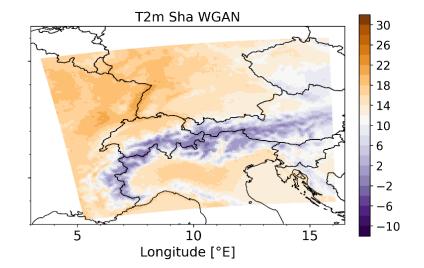
Various options to investigate the spatial variability, e.g. with power spectra ...

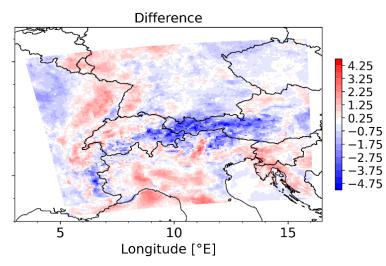
EVALUATION FRAMEWORK

Examples from single model evaluation (T2m downscaling)

Results from **Sha WGAN**







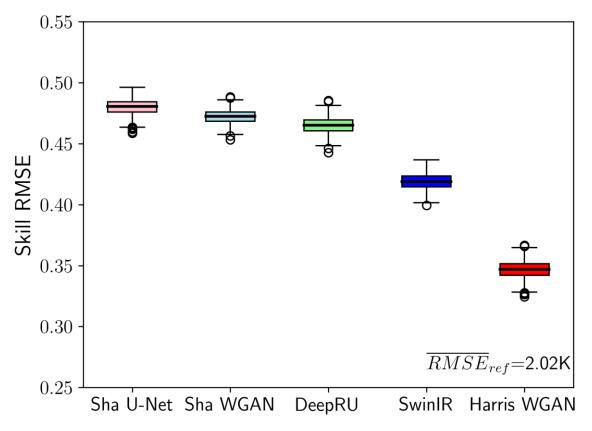
Investigation of specific examples.

Here: downscaling results from 2018-04-07 18 UTC.

EVALUATION FRAMEWORK

Examples from model inter-comparison (T2m downscaling)

Intercomparison



Better

Bilinear interpolation as (simple) reference

→ to be replaced by SAMOS

OUTLOOK

What's coming next

- Finalize training of baseline models
- Full implementation of metrics and diagnostic tools
- Publication of data via climetlab plug-in
- Publication of code on github
- Accompanying paper

Future steps:

- Extension to probabilistic downscaling
- Include precipitation downscaling task

Coming soon

Work initiated by the **MAELSTROM project**

REFERENCES

- Dabernig, Markus, et al. "Spatial ensemble post-processing with standardized anomalies." QJRMS 143.703 (2017): 909-916.
- Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." 2009 IEEE Inter. Conf. Comp. Vis., IEEE, 2009.
- Dueben, Peter D., et al. "Challenges and benchmark datasets for machine learning in the atmospheric sciences: Definition, status, and outlook." Art. Intell. Earth Sc., 1.3 (2022): e210002.
- Harder, Paula, et al. "Hard-Constrained Deep Learning for Climate Downscaling." *JMLR*, 24.365 (2023): 1-40.
- Harris, Lucy, et al. "A generative deep learning approach to stochastic downscaling of precipitation forecasts." *J. Adv. Model. Earth Sy.*, 14.10 (2022):
- Höhlein, Kevin, et al. "A comparative study of convolutional neural network models for wind field downscaling." Meteorol. Appl., 27.6 (2020): e1961.
- Liang, Jingyun, et al. "Swinir: Image restoration using swin transformer." IEEE Inter. Conf. Comp. Vis. (2021).
- Mardani, Morteza, et al. "Generative residual diffusion modeling for km-scale atmospheric downscaling." *arXiv preprint arXiv:2309.15214* (2023).
- Rasp, Stephan, et al. "WeatherBench 2: A benchmark for the next generation of data-driven global weather models." *arXiv preprint arXiv:2308.15560* (2023).
- Sha, Yingkai, et al. "Deep-learning-based gridded downscaling of surface meteorological variables in complex terrain. Part I: Daily maximum and minimum 2-m temperature." *J. Appl. Meteorol. Clim.*, 59.12 (2020): 2057-2073.
- Wang, Alex, et al. "GLUE: A multi-task benchmark and analysis platform for natural language understanding." *arXiv* preprint *arXiv*:1804.07461 (2018).

DownscaleBench: A benchmark dataset for statistical downscaling of meteorological fields

Workshop on Large-Scale Deep Learning for the Earth System | Bonn

2024-08-29 I **MICHAEL LANGGUTH**¹, SEBASTIAN LEHNER², PAULA HARDER³, ANKIT PATNALA¹, IRENE SCHICKER², MARKUS DABERNIG², MARTIN G. SCHULTZ¹

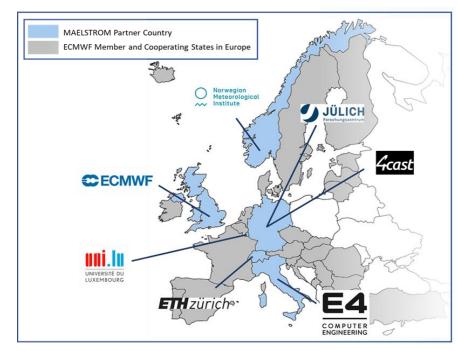
¹ Juelich Supercomputing Centre (JSC), ² Geosphere Austria, ³ Mila Quebec Al Institute

"The MAELSTROM project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955513. The JU receives support from the European Union's Horizon 2020 research and innovation programme and United Kingdom, Germany, Italy, Luxembourg, Switzerland, Norway".

THE MAELSTROM PROJECT

A EURO-HPC project to foster ML for meteorological applications

- MAchinE Learning for Scalable meTeoROlogy and cliMate
- Euro HPC project coordinated by ECMWF (Apr'21 Apr'24)
- Main objectives:
 - Develop ML solutions for meteorological applications
 - Enable efficient use of new capacities on supercomputers for the Weather and Climate community
- Collaboration between meteorologists, software developers and HPC specialists
- Six machine learning applications under development
- Benchmark initiative from Application 5

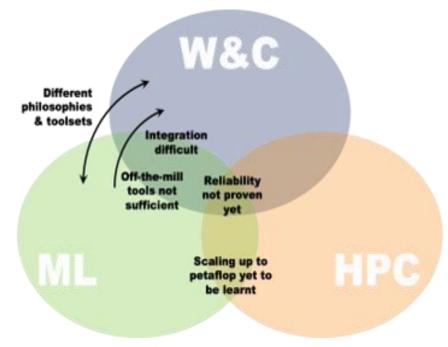


Headquarter location of all partners of the MAELSTROM consortium.

THE MAELSTROM PROJECT

A EURO-HPC project to foster ML for meteorological applications

- MAchinE Learning for Scalable meTeoROlogy and cliMate
- Euro HPC project coordinated by ECMWF (Apr'21 Apr'24)
- Main objectives:
 - Develop ML solutions for meteorological applications
 - Enable efficient use of new capacities on supercomputers for the Weather and Climate community
- Collaboration between meteorologists, software developers and HPC specialists
- Six machine learning applications under development
- Benchmark initiative from Application 5



Co-design cycle in MAELSTROM.

EVALUATION FRAMEWORK

Examples from the 2m temperature downscaling task

Dynamic predictors (ERA5 only):

- 2m temperature + temperature at model levels 137, 135, 131, 127 and 122
- Surface pressure
- 10m (u,v)-wind
- Surface latent and sensible heat fluxes
- Boundary layer height

Static predictors (ERA5 & COSMO REA6):

- Surface topography
- Land-sea mask

Evaluation metrics and diagnostics:

- RMSE
- Bias
- Mean Error of local standard deviation¹
- Average gradient amplitude error
- Energy spectra analysis (incl. RALSD-metric)²
- Integrated Quadratic Distance³
- Conditional Quantile Plots

¹ Zerenner, 2017

² Harris et al., 2022

³ Thorarinsdottir et al., 2013

The 100m (u,v)-wind downscaling task

Dynamic predictors (ERA5 only):

- 100m (u,v)-wind
- (u,v)-wind at model levels 135, 133, 131, 127 and 122
- Boundary layer height
- Geopotential height at 500 hPa
- Surface pressure

Static predictors (ERA5 & COSMO REA6):

- Surface topography
- Land-sea mask

The 100m (u,v)-wind downscaling task

Dynamic predictors (ERA5 only):

- 100m (u,v)-wind
- (u,v)-wind at model levels 135, 133, 131, 127 and 122
- Boundary layer height
- Geopotential height at 500 hPa
- Surface pressure

Static predictors (ERA5 & COSMO REA6):

- Surface topography
- Land-sea mask

Evaluation metrics and diagnostics:

- MSE and absolute relative error
- Cosine dissimilarity
- Magnitude difference
- Mean Error of local standard deviation
- Kinetic energy spectra

The horizontal global radiation downscaling task

• Post-processed global horizontal irradinace (GHI) from Frank et al., 2018 as target data (rather than raw COSMO REA6)

Dynamic predictors (ERA5 only):

- Surface net solar radiation
- Top net solar radiation
- High, medium and low cloud cover
- Cloud base height
- Total column liquid water
- Surface pressure
- CAPE
- Evaporation

Static predictors (ERA5 & COSMO REA6):

- Surface topography
- Land-sea mask
- Slope of sub-grid scale orography

The horizontal global radiation downscaling task

• Post-processed global horizontal irradinace (GHI) from Frank et al., 2018 as target data (rather than raw COSMO REA6)

Dynamic predictors (ERA5 only):

- Surface net solar radiation
- Top net solar radiation
- High, medium and low cloud cover
- Cloud base height
- Total column liquid water
- Surface pressure
- CAPE
- Evaporation

Static predictors (ERA5 & COSMO REA6):

- Surface topography
- Land-sea mask
- Slope of sub-grid scale orography

Evaluation metrics and diagnostics:

- Relative RMSE and MAE
- Bias
- Mean Error of local standard deviation
- Fraction Skill Score
- Conditional Quantile Plots

