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2m temperature field from the ERA5-reanalysis 
(∆𝑥 = 0.25°) on 2018-12-01,13:00 CET.

• High-resolved weather data is crucially demanded

• Recent success of deep learning for statistical 
downscaling (e.g. Mardani et al., 2023,
Harder et al., 2023, Harris et al., 2022)

• Intercomparison difficult:

o Variety of downscaling tasks

o Different datasets 

o Different evaluation methods

• Benchmark datasets steer progress in AI, e.g. 
ImageNet (Deng et al., 2009), GLUE (Wang et al., 2018)

• For meteorological applications, benchmarks such as 
WeatherBench 2 (Rasp et al., 2023) are rare 

MOTIVATION
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Why do we need a benchmark dataset?
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2m temperature field from COSMO-REA6 
(∆𝑥 = 0.055°) on 2018-12-01,13:00 CET.
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THE BENCHMARK DATASET

Slide 3

Design choices and components of the benchmark dataset

• Benchmark dataset closely follows requirements listed in Dueben et al., 2022

1) Clear problem statement for real-life task

2) Open data provision in high-level programming language

3) Results and code of baseline competitor models

4) Evaluation metrics defined 

5) Visualization and diagnostics in code
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Design choices and components of the benchmark dataset

• Benchmark dataset closely follows requirements listed in Dueben et al., 2022

1) Clear problem statement for real-life task

2) Open data provision in high-level programming language

3) Results and code of baseline competitor models

4) Evaluation metrics defined 

5) Visualization and diagnostics in code

1) Downscaling task(-s):

Emulate a high-resolved reanalysis (COSMO REA6) of i) 2m temperature, 
ii) 100m wind and iii) global horizontal irradiance from the ERA5-
reanalysis
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THE BENCHMARK DATASET
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Design choices and components of the benchmark dataset

2) The data:

• Predictands from COSMO-REA6 data 
(∆𝑥𝐶𝑅𝐸𝐴6

𝑟𝑜𝑡 = 0.055°)

• Task-specific set of predictor variables from the 
ERA5-reanalysis dataset (∆𝑥𝐸𝑅𝐴5 = 0.25°)

• Ready-to-use dataset provided via climetlab-plugin

• Exemplary data pipelines for TensorFlow and 
PyTorch in code base

Surface topography form COSMO REA6. The target 
domain of the downscaling benchmark comprises 
144x128 grid points and is rendered.

2024-08-29

https://climetlab.readthedocs.io/
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THE BENCHMARK DATASET
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Design choices and components of the benchmark dataset

3) Baseline competitor models

a) Deep neural networks:

o U-Net by Sha et al., 2020 (tuned)

o DeepRU (U-Net variant) by Höhlein et al., 2020

o WGAN with U-Net by Sha as generator

o WGAN by Harris et al., 2022

o SwinIR by Liang et al., 2021

b) Classical statistical model:

o Standardized Anomaly MOS (SAMOS) 
by Dabernig, 2017

Illustration of the WGAN with the U-Net by Sha et al. 

(2020) as generator.
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THE BENCHMARK DATASET

Slide 6

Design choices and components of the benchmark dataset

4&5) Evaluation metrics and diagnostics

Aim: Standardized evaluation framework

• Set of (task-specific) evaluation metrics 

• Diagnostics for marginal distribution, e.g. power spectra analysis

• Various plot products for detailed analysis 

• Two postprocessing steps:

1) Single model evaluation (script-based)  prerequisite: results in netCDF-file

2) Inter-comparison between various models (Jupyter Notebook)
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EVALUATION FRAMEWORK
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Examples from single model evaluation (T2m downscaling)

Results from 
Sha WGAN

Averaged metrics 
plotted against daytime
(seasonal evaluation possible!)

Better𝑅𝑀𝑆𝐸 = 1.04 K
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EVALUATION FRAMEWORK
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Examples from single model evaluation (T2m downscaling)

Results from 
Sha WGAN

Season-wise spatial 
evaluation, e.g. RMSE 
for spring months MAM, 
or …
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POSTPROCESSING – SINGLE MODEL EVALUATION 
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Examples from the 2m temperature downscaling task

Results from 
Sha WGAN

Various options to 
investigate the spatial 
variability, e.g. with 
power spectra …
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EVALUATION FRAMEWORK
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Examples from single model evaluation (T2m downscaling)

Results from 
Sha WGAN

2024-08-29

Investigation of specific examples. 
Here: downscaling results from 2018-04-07 18 UTC.



EVALUATION FRAMEWORK
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Examples from model inter-comparison (T2m downscaling)

Intercomparison

Bilinear interpolation as 
(simple) reference 
 to be replaced by 
SAMOS

Better
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OUTLOOK

• Finalize training of baseline models

• Full implementation of metrics and diagnostic tools

• Publication of data via climetlab plug-in

• Publication of code on github

• Accompanying paper

Future steps:

• Extension to probabilistic downscaling

• Include precipitation downscaling task

Slide 12

What’s coming next

Coming soon

Work initiated by the 
MAELSTROM project

2024-08-29
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THE MAELSTROM PROJECT

Slide 15

A EURO-HPC project to foster ML for meteorological applications

• MAchinE Learning for Scalable meTeoROlogy and cliMate

• Euro HPC project coordinated by ECMWF (Apr’21 – Apr’24)

• Main objectives:

o Develop ML solutions for meteorological applications

o Enable efficient use of new capacities on supercomputers 

for the Weather and Climate community

• Collaboration between meteorologists, software developers 

and HPC specialists  

• Six machine learning applications under development

• Benchmark initiative from Application 5
Headquarter location of all partners of the 

MAELSTROM consortium.
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A EURO-HPC project to foster ML for meteorological applications

• MAchinE Learning for Scalable meTeoROlogy and cliMate

• Euro HPC project coordinated by ECMWF (Apr’21 – Apr’24)

• Main objectives:

o Develop ML solutions for meteorological applications

o Enable efficient use of new capacities on supercomputers 

for the Weather and Climate community

• Collaboration between meteorologists, software developers 

and HPC specialists  

• Six machine learning applications under development

• Benchmark initiative from Application 5

Co-design cycle in MAELSTROM.
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EVALUATION FRAMEWORK
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Examples from the 2m temperature downscaling task

Dynamic predictors (ERA5 only):

• 2m temperature + temperature at model 
levels 137, 135, 131, 127 and 122

• Surface pressure

• 10m (u,v)-wind

• Surface latent and sensible heat fluxes

• Boundary layer height

Static predictors (ERA5 & COSMO REA6):

• Surface topography

• Land-sea mask

Evaluation metrics and diagnostics:

• RMSE 

• Bias

• Mean Error of local standard deviation1

• Average gradient amplitude error

• Energy spectra analysis (incl. RALSD-metric)2

• Integrated Quadratic Distance3

• Conditional Quantile Plots

2024-08-29

1 Zerenner, 2017
2 Harris et al., 2022
3 Thorarinsdottir et al., 2013



DATASETS OF THE DOWNSCALING TASKS
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The 100m (u,v)-wind downscaling task

Dynamic predictors (ERA5 only):

• 100m (u,v)-wind 

• (u,v)-wind at model levels 135, 133, 131, 
127 and 122

• Boundary layer height

• Geopotential height at 500 hPa

• Surface pressure

Static predictors (ERA5 & COSMO 
REA6):

• Surface topography

• Land-sea mask
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DATASETS OF THE DOWNSCALING TASKS

Slide 17

The 100m (u,v)-wind downscaling task

Dynamic predictors (ERA5 only):

• 100m (u,v)-wind 

• (u,v)-wind at model levels 135, 133, 131, 
127 and 122

• Boundary layer height

• Geopotential height at 500 hPa

• Surface pressure

Static predictors (ERA5 & COSMO 
REA6):

• Surface topography

• Land-sea mask

Evaluation metrics and diagnostics:

• MSE and absolute relative error

• Cosine dissimilarity

• Magnitude difference

• Mean Error of local standard deviation

• Kinetic energy spectra
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DATASETS OF THE DOWNSCALING TASKS
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The horizontal global radiation downscaling task

• Post-processed global horizontal irradinace (GHI) from Frank et al., 2018 as target
data (rather than raw COSMO REA6)

Dynamic predictors (ERA5 only):

• Surface net solar radiation

• Top net solar radiation

• High, medium and low cloud cover

• Cloud base height

• Total column liquid water

• Surface pressure

• CAPE

• Evaporation

Static predictors (ERA5 & COSMO REA6):

• Surface topography

• Land-sea mask

• Slope of sub-grid scale orography

2024-08-29

https://reanalysis.meteo.uni-bonn.de/?Derived_data_sets___Post-Processed_Radiation
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The horizontal global radiation downscaling task

• Post-processed global horizontal irradinace (GHI) from Frank et al., 2018 as target
data (rather than raw COSMO REA6)

Dynamic predictors (ERA5 only):

• Surface net solar radiation

• Top net solar radiation

• High, medium and low cloud cover

• Cloud base height

• Total column liquid water

• Surface pressure

• CAPE

• Evaporation

Static predictors (ERA5 & COSMO REA6):

• Surface topography

• Land-sea mask

• Slope of sub-grid scale orography

Evaluation metrics and diagnostics:

• Relative RMSE and MAE

• Bias

• Mean Error of local standard deviation

• Fraction Skill Score

• Conditional Quantile Plots
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