001     1034666
005     20250203133234.0
024 7 _ |a 10.1103/PhysRevResearch.6.023251
|2 doi
024 7 _ |a 10.34734/FZJ-2024-07425
|2 datacite_doi
024 7 _ |a WOS:001240632500002
|2 WOS
037 _ _ |a FZJ-2024-07425
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Kraft, Markus
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Lindblad dynamics from spatio-temporal correlation functions in nonintegrable spin- 1 / 2 chains with different boundary conditions
260 _ _ |a College Park, MD
|c 2024
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736509442_6156
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We investigate the Lindblad equation in the context of boundary-driven magnetization transport in spin-1/2 chains. Our central question is whether the nonequilibrium steady state of the open system, including its buildup in time, can be described on the basis of the dynamics in the closed system. To this end, we rely on a previous study [Heitmann et al., Phys. Rev. B 108, L201119 (2023)], in which a description in terms of spatio-temporal correlation functions was suggested in the case of weak driving and small system-bath coupling. Because this work focused on integrable systems and periodic boundary conditions, we here extend the analysis in three directions: (1) We consider nonintegrable systems, (2) we take into account open boundary conditions and other bath-coupling geometries, and (3) we provide a comparison to time-evolving block decimation. While we find that nonintegrability plays a minor role, the choice of the specific boundary conditions can be crucial due to potentially nondecaying edge modes. Our large-scale numerical simulations suggest that a description based on closed-system correlation functions is a useful alternative to already existing state-of-the-art approaches.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)397107022 - Kombinationen gedämpfter harmonischen Oszillationen als stabile Bausteine von Autokorrelationsfunktionen in Quantenvielteilchensystemen (397107022)
|0 G:(GEPRIS)397107022
|c 397107022
|x 1
536 _ _ |a DFG project G:(GEPRIS)397300368 - Dekohärenz und Relaxation in Quantenspinclustern (397300368)
|0 G:(GEPRIS)397300368
|c 397300368
|x 2
536 _ _ |a DFG project G:(GEPRIS)397067869 - Nichtgleichgewichtsdynamik in 2D Clustern aus der Perspektive von Quantentypikalität und Eigenzustandsthermalisierung (397067869)
|0 G:(GEPRIS)397067869
|c 397067869
|x 3
536 _ _ |a DFG project G:(GEPRIS)355031190 - FOR 2692: Fundamental Aspects of Statistical Mechanics and the Emergence of Thermodynamics in Non-Equilibrium Systems (355031190)
|0 G:(GEPRIS)355031190
|c 355031190
|x 4
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Richter, Jonas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jin, Fengping
|0 P:(DE-Juel1)144355
|b 2
700 1 _ |a Nandy, Sourav
|0 0000-0002-0407-3157
|b 3
700 1 _ |a Herbrych, Jacek
|0 0000-0001-9860-2146
|b 4
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 5
700 1 _ |a De Raedt, Hans
|0 P:(DE-Juel1)179169
|b 6
700 1 _ |a Gemmer, Jochen
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Steinigeweg, Robin
|0 0000-0003-0608-0884
|b 8
773 _ _ |a 10.1103/PhysRevResearch.6.023251
|g Vol. 6, no. 2, p. 023251
|0 PERI:(DE-600)3004165-X
|n 2
|p 023251
|t Physical review research
|v 6
|y 2024
|x 2643-1564
856 4 _ |u https://juser.fz-juelich.de/record/1034666/files/PhysRevResearch.6.023251.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1034666
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144355
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0002-0407-3157
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 0000-0001-9860-2146
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)138295
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)179169
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 0000-0003-0608-0884
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-02-07T08:08:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-02-07T08:08:02Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-02-07T08:08:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21