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We investigate the Lindblad equation in the context of boundary-driven magnetization transport in spin-1/2
chains. Our central question is whether the nonequilibrium steady state of the open system, including its buildup
in time, can be described on the basis of the dynamics in the closed system. To this end, we rely on a previous
study [Heitmann et al., Phys. Rev. B 108, L201119 (2023)], in which a description in terms of spatio-temporal
correlation functions was suggested in the case of weak driving and small system-bath coupling. Because this
work focused on integrable systems and periodic boundary conditions, we here extend the analysis in three
directions: (1) We consider nonintegrable systems, (2) we take into account open boundary conditions and other
bath-coupling geometries, and (3) we provide a comparison to time-evolving block decimation. While we find
that nonintegrability plays a minor role, the choice of the specific boundary conditions can be crucial due to
potentially nondecaying edge modes. Our large-scale numerical simulations suggest that a description based on
closed-system correlation functions is a useful alternative to already existing state-of-the-art approaches.
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I. INTRODUCTION

Quantum many-body systems out of equilibrium are a
central topic of modern physics, and they have attracted in-
creasing attention over recent years, both experimentally and
theoretically [1–5]. Key questions in this context are the emer-
gence and properties of steady states in the limit of long times
and also the actual route to such states in the course of time
[2–5]. The understanding of these questions is of importance
to isolated systems without any coupling to an environment
and open systems with weak or strong coupling to a bath, and
it has witnessed rather remarkable progress due to fresh con-
cepts like eigenstate thermalization [6–8] and the typicality
of random pure states [9–17] and due to the development of
sophisticated numerical techniques [18,19].

In systems with a globally conserved quantity, a quite
natural nonequilibrium process is given by transport [20]. It
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is a prime example of relevance to closed and open systems
alike, in addition to the relevance of steady states and the re-
laxation to them. In isolated systems, a widely used approach
is linear-response theory, which yields the well-known Kubo
formula in terms of current autocorrelation functions [21].
This theory can be formulated for density-density correlation
functions as well, either in momentum and frequency space or
in the space and time domain. While linear response provides
a clear-cut strategy, the concrete evaluation of correlation
functions for specific models has turned out to be an analytical
and numerical challenge, even for seemingly simple models of
the Heisenberg or Hubbard type in one dimension [20], with
the most recent progress being by generalized hydrodynamics
[22,23].

In an open-system scenario, transport can be induced by
coupling the system to baths at different temperatures or
chemical potentials, which then usually yields a nonequilib-
rium steady state with a constant current and characteristic
density profile in the long-time limit [24–27]. Such a scenario
is often modeled by an equation of Lindblad form [28]. While
the derivation of this equation from a microscopic system-bath
model is a nontrivial task in practice [26,29], it is the most
general version of a time-local master equation, which maps
any density matrix to another density matrix. In particular,
it allows for efficient numerical treatment by matrix-product
states for quite large system sizes [24,30–32], as dissipation
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FIG. 1. Sketch of the three different geometries of the bath cou-
pling. (a) Periodic boundary conditions. (b) and (c) Open boundary
conditions with the bath coupling located exactly at the edges or
close to the edges of the system. Note that open boundary conditions
should not be confused with the open-system scenario.

reduces the unavoidable growth of entanglement as a function
of time.

The two complementary approaches of closed and open
systems have been the basis for reliable identification of
different dynamical phases, including the case of normal dif-
fusion [20], and also for other transport [33–44] types ranging
from ballistic to anomalous dynamics. Moreover, quantita-
tive agreement of diffusion constants was found in some
cases [45–48]. However, clear correspondence between the
dynamics in closed and open systems is still lacking [49–51].
Thus, the main question of the present paper is, Can one
predict the open-system dynamics based on knowledge of
the closed-system time evolution? While a general answer to
this question appears to be hopeless, it might be possible for
specific models and parameters at least.

To investigate this question, we rely here on a previous
study [52], in which spatio-temporal correlation functions
were suggested as a convenient ingredient in the case of weak
driving and small system-bath coupling. Because the afore-
mentioned work focused on integrable systems and periodic
boundary conditions, we intend to extend the analysis in three
different directions: (1) We consider nonintegrable systems,
(2) we take into account open boundary conditions and other
bath-coupling geometries (see Fig. 1), and (3) we provide
a comparison to time-evolving block decimation (TEBD).
While we find that nonintegrability plays a minor role, the
choice of the specific boundary conditions can be crucial
due to potentially nondecaying edge modes. Our large-scale
numerical simulations suggest that a description based on
closed-system correlation functions constitutes a useful alter-
native to existing state-of-the-art approaches.

Our paper is organized as follows. To begin with, we in-
troduce in Sec. II the closed-system models studied here and
the spatio-temporal correlation functions. Then, in Sec. III, we
discuss the concept of dynamical quantum typicality and de-
scribe its implications for numerical and analytical purposes.
Afterwards, in Sec. IV, we continue with the open-system
setup, and then we review the technique of stochastic unravel-
ing in Sec. V. Section VI is devoted to the central prediction
used later and its underlying assumptions. Next, in Sec. VII,

we present our results. We conclude in Sec. VIII and give
additional information in the Appendixes.

II. CLOSED MODELS AND SPATIO-TEMPORAL
CORRELATION FUNCTIONS

In this paper, we consider two different paradigmatic ex-
amples of quantum many-body models which have previously
attracted significant attention in the literature on, e.g., trans-
port. These two examples are nonintegrable modifications of
the integrable spin-1/2 XXZ model in one dimension. The
Hamiltonian of this model is given by [20]

Hobc = J
N−1∑
r=1

(
Sx

r Sx
r+1 + Sy

r Sy
r+1 + �Sz

rSz
r+1

)
, (1)

where Si
r (i = x, y, z) are spin-1/2 operators at site r, N is the

total number sites, J > 0 is the antiferromagnetic exchange
coupling constant, and � is the anisotropy in the z direction.
While the Hamiltonian in Eq. (1) is denoted for open boundary
conditions, we will also use periodic boundary conditions,

Hpbc = Hobc + J
(
Sx

N Sx
1 + Sy

N Sy
1 + �Sz

N Sz
1

)
, (2)

where the numbers of sites N is chosen to be even. The
specific choice of boundary conditions will play an important
role in the open setup, which will be discussed later in detail.

The spin-1/2 XXZ chain is well known to be integrable
for any value of �, and it was the focus of our previ-
ous work [52]. In this work, we go beyond it and include
integrability-breaking perturbations, which then yield a more
generic situation. As the first type of perturbation, we choose
further interactions between next-nearest sites, which lead, for
open boundary conditions, to

H ′
obc = Hobc + J�′

N−2∑
r=1

Sz
rSz

r+2 (3)

and, although not shown explicitly, to a corresponding form
for periodic boundary conditions. Here, �′ is the strength of
the perturbation, and we will focus on the particular value
�′ = 0.5, for which integrability is well broken. As the sec-
ond type of perturbation, we choose a Zeeman term with a
staggered magnetic field,

H ′′
obc/pbc = Hobc/pbc + B

N∑
r=1

(−1)rSz
r , (4)

where we set the strength of the perturbation to the specific
value B/J = 0.5 for the same reason as above.

Since the total magnetization Sz = ∑
r Sz

r is strictly con-
served for the models in Eqs. (3) and (4), [H, Sz] = 0,
transport of spins is a meaningful question. Within the differ-
ent approaches to transport in general, linear-response theory
is one of the main concepts. While this theory leads to the
Kubo formula and current autocorrelation functions [21], it is
also the basis for spatio-temporal correlation functions,

〈
Sz

r (t )Sz
r′ (0)

〉
eq = tr

[
e−βH eiHt Sz

re−iHt Sz
r′
]

tr[e−βH ]
. (5)

Here, β = 1/T is the inverse temperature (measured in units
of the Boltzmann constant), and from now on we will
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FIG. 2. (a) Time-space density plot of the correlation function
〈Sz

r (t )Sz
r′ (0)〉eq, as obtained numerically for the Hamiltonian H ′ in

Eq. (3) with � = 1.5, �′ = 0.5, N = 20, r′ = N/2 + 1 = 11, and
periodic boundary conditions. (b) Corresponding time evolution of
the standard deviation �(t ) as well as two power laws, ∝ t1 and
∝t1/2, in a double-logarithmic plot.

consider the high-temperature limit β → 0, which still fea-
tures nontrivial transport properties. The correlation functions
in Eq. (5) measure the overlap of a time-evolved Sz

r (t ) at some
site r with an initial Sz

r′ (0) at another site r′. In Fig. 2(a), we
illustrate the space-time dependence, as obtained numerically
for the Hamiltonian H ′ in Eq. (3) with � = 1.5, �′ = 0.5,
N = 20, and periodic boundary conditions. Initially, there is
a δ-function peak at the site r = r′ and a uniform equilibrium
background at other sites r �= r′. The subsequent broadening
of the δ-function peak corresponds to transport.

A convenient way to analyze the type of transport is pro-
vided by the spatial variance [53]

�2(t ) =
∑

r

(r − r′)2Crr′ (t ) −
[∑

r

(r − r′)Crr′ (t )

]2

, (6)

where the distribution Crr′ (t ) = 4〈Sz
r (t )Sz

r′ 〉eq is a normalized
version of Eq. (5),

∑
r Crr′ (t ) = 1. For diffusive transport,

�(t ) ∝ t1/2. In Fig. 2(b), we depict �(t ) for the example in
Fig. 2(a). While it is clear that a ballistic growth �(t ) ∝ t
has to take place at short times, there is a diffusive growth
�(t ) ∝ t1/2 at intermediate times, as expected due to the non-
integrability of the model [54]. It is worth mentioning that the
integrable model in Eq. (1) features a richer phase diagram,
including superdiffusive behavior for � = 1 and ballistic be-
havior for � < 1. The different types of transport become
manifest in the quantity [53]

D(t ) = 1

2

d

dt
�2(t ), (7)

which becomes constant in the case of diffusion.
Let us mention here that the spatio-temporal correlation

function 〈Sz
r (t )Sz

r′ (0)〉eq not only is a strategy to study transport
in closed systems but may also be used to predict the buildup
of a nonequilibrium steady state in open systems, where a bath
is coupled at each edge. Investigating the quality of such a
prediction is a central point of our paper. However, before

we discuss this point in detail, we need to introduce further
concepts.

III. DYNAMICAL QUANTUM TYPICALITY

Next, let us discuss dynamical quantum typicality as one
of the central concepts applied in this paper. On the one hand,
this concept provides the basis for a numerical calculation
of the spatio-temporal correlation functions 〈Sz

r (t )Sz
r′ (0)〉eq in

closed systems of comparatively large size. On the other hand,
it constitutes a main ingredient to connect these correlation
functions to the dynamics in open systems, as we will see later.

Loosely speaking, the basic idea of typicality is that a
single pure state can imitate the full statistical ensemble on the
level of the corresponding expectation values [9–13]. To be
precise, we introduce a pure state drawn at random (according
to the Haar measure) from a Hilbert space of high dimension
D,

|ψ〉 =
D∑

n=1

c j | j〉, (8)

where {| j〉} is an arbitrary orthonormal basis and the real and
imaginary parts of the coefficients c j = a j + ib j result from
a Gaussian probability distribution with zero mean and unit
variance. For such a pure state, we then obtain the approxima-
tion [16,17]

〈
Sz

r (t )Sz
r′ (0)

〉
eq = 〈ψ |Sz

r (t )Sz
r′ (0)|ψ〉

〈ψ |ψ〉 + O

(
1√
D

)
, (9)

where the statistical error on the right-hand side is ex-
ponentially small in system size because D = 2N . This
approximation can be rewritten as

〈
Sz

r (t )Sz
r′ (0)

〉
eq ≈ 〈ψ (t )|Sz

r |φ(t )〉
〈ψ |ψ〉 , (10)

using the two auxiliary pure states |ψ (t )〉 = e−iHt |ψ〉 and
|φ(t )〉 = e−iHt Sz

r′ |ψ〉. Expression (10), just like analogous
expressions for other observables, has turned out to be par-
ticularly useful for numerical simulations since its evaluation
requires forward propagation of pure states in time. These
propagations can be carried out efficiently in huge Hilbert
spaces, which are orders of magnitude larger than the ones
accessible by standard exact diagonalization [16,17]. Note
that the numerical data in Fig. 2 are also obtained in this way,
but on the basis of a slightly different and simpler expression,
as explained in the following.

The simplification employs the fact that Sz
r and nr = Sz

r +
1/2 are operators with the specific properties tr[Sz

r ] = 0 and
n2

r = nr . Using these two properties and introducing the pure
state

|ϕ(t )〉 = e−iHt nr′ |ψ〉 (11)

then lead to the expression [55]

〈
Sz

r (t )Sz
r′ (0)

〉
eq ≈ 1

2

〈ϕ(t )|Sz
r |ϕ(t )〉

〈ϕ|ϕ〉 , (12)

which involves only a single pure state. This expression has an
obvious numerical benefit but also provides a central analyti-
cal relation for later purposes in the context of open systems.
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IV. OPEN SETUP AND LINDBLAD EQUATION

Now, let us turn to an open-system scenario, where we cou-
ple the system to an environment. We describe this scenario
using the Lindblad equation,

ρ̇(t ) = Lρ(t ) = i[ρ(t ), H] + Dρ(t ), (13)

as the most general form of a time-local quantum master
equation which maps any density matrix to another density
matrix [28]. The Lindblad equation (13) consists of a coherent
part for the unitary time evolution with respect to H and an
incoherent damping term. This damping term is given by

Dρ(t ) =
∑

j

α j

(
Ljρ(t )L†

j − 1

2

{
ρ(t ), L†

j L j
})

, (14)

with non-negative rates α j , Lindblad operators Lj , and the
anticommutator {•, •}. Despite the generality of the Lindblad
equation, its derivation is a challenging task for a specific
microscopic model [26,29].

Here, we couple our system to two baths and choose the
respective Lindblad operators [20]

L1 = S+
B1

, α1 = γ (1 + μ), (15)

L2 = L†
1 = S−

B1
, α2 = γ (1 − μ), (16)

L3 = S+
B2

, α3 = γ (1 − μ), (17)

L4 = L†
3 = S−

B2
, α4 = γ (1 + μ), (18)

where γ is the system-bath coupling and μ is the driving
strength. L1 and L2 are local operators, which act on a site
B1 and flip a spin up and down, respectively. L3 and L4 are
corresponding operators at another site B2.

Our different choices of the bath-contact sites B1 and B2

are illustrated in Fig. 1. In the case of periodic boundary
conditions, we set B1 = 1 and B2 = N/2 + 1 at a distance N/2
[see Fig. 1(a)]. In the case of open boundary conditions, we
set B1 = 1 at the left edge and B2 = N at the right edge or, as
an alternative, B1 and B2 close to the edges [see Figs. 1(b)
and 1(c)]. This alternative will be discussed in detail later.
For all choices of B1 and B2, the first (second) bath induces
a net polarization of order μ (−μ), leading to a steady state in
the long-time limit with a characteristic density profile and a
constant current.

In this open scenario, we are interested in the dynamics of
local magnetization, occurring at finite times and in the long-
time limit. Thus, we study expectation values〈

Sz
r (t )

〉 = tr
[
ρ(t )Sz

r

]
, (19)

which depends on the parameters of the Hamiltonian H and
also on the two bath parameters μ and γ . As the initial
condition, we choose ρ(0) ∝ 1, which corresponds to the
high-temperature limit β → 0 and a homogeneous profile of
magnetization.

V. STOCHASTIC UNRAVELING OF THE
LINDBLAD EQUATION

We aim to find a solution of the Lindblad equation or an
accurate approximation of the same. To this end, we rely on

the concept of stochastic unraveling, which uses pure states
|ψ〉 rather than density matrices ρ [56,57]. This concept con-
sists of an alternating sequence of stochastic jumps with one
of the Lindblad operators and, between the stochastic jumps,
a deterministic time evolution with respect to an effective
Hamiltonian,

Heff = H − i

2

∑
j

α jL
†
j L j . (20)

For our choice of Lindblad operators in Eqs. (15)–(18), this
effective Hamiltonian takes on the form

Heff = H − iγ + iγμ
(
nB1 − nB2

)
, (21)

with the occupation number nr = S+
r S−

r = Sz
r + 1/2. In this

work, we focus on the weak-driving case. For μ 
 1, Heff can
be approximated as

Heff ≈ H − iγ . (22)

Hence, the time evolution with respect to Heff becomes

|ψ (t )〉 ≈ e−γ t e−iHt |ψ〉. (23)

Therefore, the dynamics of a pure state is generated by only
the closed system H , apart from the scalar damping term. This
fact will be one of the main ingredients to connect the closed
system and the weakly driven open system. For larger μ, the
dynamics is more complicated and also involves the operators
nB1 and nB2 .

Since Heff is non-Hermitian, the norm of the pure state
ψ (t ) is not conserved and decays over the course of time
[see Eq. (23)]. Therefore, at some time t = τ , the condition
||ψ (t )〉 ||2 > ε is first violated for a given ε, which is here
drawn at random from a box distribution ]0,1]. At this point
in time, a stochastic jump with one of the Lindblad operators
takes place. The new and normalized pure state reads [57]

|ψ ′(t )〉 = Lj |ψ (t )〉
||Lj |ψ (t )〉|| , (24)

where the specific jump is chosen with probability

p j = α j ||Lj |ψ (t )〉||2∑
j α j ||Lj |ψ (t )〉||2 . (25)

After the jump, the procedure continues with the next deter-
ministic time evolution with respect to Heff.

This sequence of stochastic jumps and deterministic
evolutions leads to a particular trajectory |ψT (t )〉. The
time-dependent density matrix according to the Lindblad
equation can eventually be approximated by the average over
different trajectories T . Thus, the expectation value reads

〈
Sz

r (t )
〉 ≈ 1

Tmax

Tmax∑
T =1

〈ψT (t )|Sz
r |ψT (t )〉

|| |ψT (t )〉 ||2 , (26)

where Tmax is a large enough number of trajectories. For
Tmax → ∞, the approximation becomes an equality, and the
stochastic unraveling can be used as an, in principle, exact
numerical technique. Moreover, it will provide the basis for
an analytical connection between closed-system and open-
system dynamics.
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As already mentioned above, we consider ρ(0) ∝ 1 to be
the initial condition of the Lindblad equation, which is re-
alized in the stochastic unraveling via a random pure state
|ψ (0)〉 of the form in Eq. (8).

VI. CONNECTION BETWEEN CLOSED
AND OPEN SYSTEMS

A. Time evolution

Now, we are ready to discuss our central prediction, which
specifically connects the dynamics in closed and open sys-
tems. While this prediction was presented in our previous
work [52,58] in detail, we repeat here parts of the derivation
which will be of help in understanding the results presented
afterwards.

The derivation is based on the stochastic unraveling of the
Lindblad equation. It is important to recall that we focus on
the weak-driving case μ 
 1. In this case, the deterministic
evolution with respect to Heff is unitary apart from a scalar
damping term [see Eq. (23)]. As a consequence, when we
calculate the quantity

dr (t ) = 〈ψT (t )|Sz
r |ψT (t )〉

|| |ψT (t )〉 ||2 , (27)

this scalar cancels out. Because the initial condition is a
random state of the form in Eq. (8), the first deterministic
evolution is quite simple. Under unitary time evolution, a
random states remains a random state with a uniform density
profile, dr (t ) = 0. Therefore, the first nontrivial event is the
subsequent jump.

Without loss of generality, let us consider at some time t =
τ a specific jump with one of the Lindblad operators, e.g., L1.
Then, the resulting pure state reads

|ψ ′(τ )〉 ∝ L1 |ψ (τ − 0+)〉, (28)

which has exactly the same structure as the pure state in
Eq. (11). Hence, we can employ dynamical quantum typicality
and get

dr (t )

2
≈ �(t − τ )

〈
Sz

r (t − τ )Sz
B1

(0)
〉
eq, (29)

where �(t ) is the Heaviside function. Using the same
arguments, we can obtain analogous relations for the re-
maining Lindblad operators Lj , which then involve either
〈Sz

r (t )Sz
B1

(0)〉eq or 〈Sz
r (t )Sz

B2
(0)〉eq. Afterwards, averaging over

all four jump possibilities yields

d̄r (t )

2
≈ (p1 − p2) �(t − τ )

〈
Sz

r (t − τ )Sz
B1

(0)
〉
eq

+ (p3 − p4) �(t − τ )
〈
Sz

r (t − τ )Sz
B2

(0)
〉
eq, (30)

with jump probabilities p j = α j/4γ for a random state
[see Eq. (25)]. Finally, by inserting the prefactors α j from
Eqs. (15)–(18), we end up with

d̄r (t )≈μ�(t − τ )
〈
Sz

r (t − τ )Sz
B1

(0)
〉
eq

−μ�(t − τ )
〈
Sz

r (t − τ )Sz
B2

(0)
〉
eq (31)

for the expectation value after the first jump.

FIG. 3. Temporal decay of the autocorrelation function
〈Sz

1(t )Sz
1(0)〉eq for (a) periodic boundary conditions and (b) open

boundary conditions, as obtained numerically for the Hamiltonian
H ′ in Eq. (3) for different � at fixed �′ = 0.5 and N = 20.
The equilibration value 1/(4N ) and the timescale 1/(2γ ), with
γ /J = 0.1, are indicated.

To proceed, a natural idea is to reuse the same line of rea-
soning for the second and all subsequent jumps. After the first
jump, however, the pure state is different since it has an inho-
mogeneous density profile with magnetization concentrated
at the site of the bath contact. Thus, one has to wait until the
injected magnetization has spread over a piece of the system.
Clearly, such a waiting time requires a small enough value of
the system-bath coupling γ , as illustrated in Fig. 3. This kind
of equilibration is a central ingredient, and its impact will be
scrutinized for specific models later. Assuming equilibration,
we can iterate the arguments and obtain a superposition of the
form

d̄r (t )

2μ
≈

∑
j

A j �(t − τ j )
[〈

Sz
r (t − τ j )S

z
B1

(0)
〉
eq

− 〈
Sz

r (t − τ j )S
z
B2

(0)
〉
eq

]
, (32)

where the amplitudes Aj can be calculated from the jump
probabilities in Eq. (25) and result in [52]

Aj = a j − d̄B1 (τ j − 0+)

μ
, (33)

with

a j = μ − 2 d̄B1 (τ j − 0+)

2 − 4μ d̄B1 (τ j − 0+)
. (34)

If d̄B1 (τ j − 0+) → 0, Aj → 1/2.
Because the expression in Eq. (32) applies to a single

sequence of jump times, (τ1, τ2, . . .), the final prediction is
obtained with the average

〈
Sz

r (t )
〉 ≈ 1

Tmax

Tmax∑
T =1

d̄r,T (t ) (35)
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over trajectories with different jump times. Due to the scalar
damping term in Eq. (23), these jump times are given by

τ j+1 = τ j − ln
ε j+1

2γ
, (36)

where ε j+1 is drawn at random from a box distribution ]0,1]
again.

In principle, the prediction in Eqs. (32) and (35) can
be calculated analytically for a specific model. However,
the closed-system correlation functions 〈Sz

r (t )Sz
B1

(0)〉eq and
〈Sz

r (t )Sz
B2

(0)〉eq are often available only numerically, such that
the prediction has to be calculated numerically as well.

B. Injected magnetization

While Eqs. (32) and (35) allow us to predict the dynamics
of magnetization at finite times and in the limit of long times,
a similar expression can derived for the respective currents in
the steady state. To this end, let us consider the magnetization
injected by the first bath, which can be predicted as [52]

〈
δSz

B1
(t )

〉 ≈ 1

Tmax

Tmax∑
T =1

δd̄B1,T (t ), (37)

with δ being just a notation for “injected” and

δd̄B1,T (t )

2μ
≈

∑
j

A j �(t − τ j )
〈[

Sz
B1

(0)
]2〉

, (38)

which is slightly simpler than Eq. (32). Since in the steady
state all currents are the same,

〈 jr〉 = 〈 jr′ 〉, B1 � r, r′ � B2, (39)

it is sufficient to know 〈 jB1〉, which can be expressed as

〈
jB1

〉 = d

dt

〈
δSz

B1
(t )

〉
f

. (40)

Here, f = 2 for periodic boundary conditions (flow to the
right and left of the bath), and f = 1 for open boundary
conditions (flow only to the right of the bath).

With knowledge of the steady-state current, it is also pos-
sible to predict the diffusion constant via [20]

D = − 〈 jr〉〈
Sz

r+1

〉 − 〈
Sz

r

〉 (41)

for some site r in the bulk.

VII. RESULTS

A. Next-nearest-neighbor interactions and periodic
boundary conditions

Finally, we turn to our numerical simulations, in which
the central goal is to analyze the quality of the prediction
in Eqs. (32) and (35) for various situations. To start with,
we investigate the spin-1/2 XXZ chain with interactions be-
tween next-nearest neighbors, Eq. (3), and the case of periodic
boundary conditions [Fig. 1(a)]. Afterwards, we additionally
study other perturbations and the case of open boundary con-
ditions with different bath-coupling geometries.

Because a main ingredient of the prediction has been the
equilibration of the injected magnetization, we first focus

FIG. 4. Open-system dynamics for the model H ′ in Eq. (3),
as obtained numerically for � = 0.5, �′ = 0.5, N = 20, periodic
boundary conditions, small coupling γ /J = 0.1, and weak driving
μ = 0.1. Exact results from the full stochastic unraveling (data)
are compared to the prediction (labeled “Eq.”), which is based on
spatio-temporal correlation functions in the closed system. (a) Time
evolution of the local magnetization 〈Sz

r (t )〉 for different sites r.
(b) Site dependence of the steady state at tJ = 50. (c) Magnetization
injected by the first bath as a function of time.

on this assumption. To this end, we numerically calculate
in Fig. 3(a) the equal-site correlation function 〈Sz

r (t )Sz
r (0)〉eq

for �′ = 0.5, N = 20, and an arbitrary site r due to periodic
boundary conditions. Apparently, for all � depicted, this func-
tion starts with the initial value 1/4, decays substantially on a
timescale tRJ ≈ 5, and then approaches the equilibration value
1/(4N ) in the limit of long times. By comparing tR to 1/(2γ )
from Eq. (36), we identify γ /J = 0.1 as a reasonable choice
for the system-bath coupling, which we fix from now on for
a fair comparison, together with the choice μ = 0.1 to ensure
weak driving.

For the value � = 0.5, we depict in Fig. 4(a) the time
evolution of magnetization in the open system. Here, the pre-
diction is carried out for ≈10 000 different sequences of jump
times, which already yields smooth curves. The full stochastic
unraveling, without any assumption, was evaluated on clusters
and turns out to require as many as ≈200 000 (or more)
sequences for a comparable smoothness [59]. Despite residual
statistical fluctuations, the agreement is almost perfect and
is clearly visible from short to long times. This convincing
agreement can also be seen for the steady-state profile in
Fig. 4(b). Compared to previous results for integrable systems
[52], the degree of agreement turns out to be similar. This
finding indicates that nonintegrability is not required for the
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FIG. 5. Similar data to those in Fig. 4(a), but now for (a) � = 1.0
and (b) � = 1.5.

prediction to hold, which is consistent with the fact that such
an assumption does not enter the derivation.

In Fig. 4(c), we also show the injected magnetization,
which grows linearly with time. From the slope and the slope
of the steady-state density profile in Fig. 4(b), we can extract
a diffusion constant via Eq. (41). The value D/J ≈ 2.9 agrees
well with other values in the literature, such as D/J ≈ 3.1 in
the closed system [60,61], and serves as a further reality check
of our approach.

To ensure that our results do not depend on the specific
choice of parameters, we redo in Fig. 5 the calculation for
other � �= 0.5. The overall agreement is apparently the same.

B. Open boundary conditions and different
bath-coupling geometries

Now, we move forward to the case of open boundary
conditions with a standard bath coupling at the edges, as
sketched in Fig. 1(b). For such a situation, it is also possible
to obtain the solution of the Lindblad equation using TEBD
[19,62] as a state-of-the-art technique in this context. For the
same Hamiltonian and parameters as before, we depict in
Fig. 6 the numerical result from TEBD and additionally make
a comparison to the exact stochastic-unraveling procedure.
Even though statistical fluctuations are again visible, both
approaches coincide for all times and � depicted. This agree-
ment particularly confirms the correctness of our numerics.

When we compare TEBD to the actual prediction in Fig. 7,
the agreement is less convincing for long times and becomes
worse for larger values of �. To understand the origin of
the disagreement, we test the assumption of equilibration by
calculating in Fig. 3(b) the equal-site correlation function
〈Sz

r (t )Sz
r (0)〉eq at the left-edge site r = 1. In contrast to pe-

riodic boundary conditions, this function decays slower and
develops long-time tails for large �, which can be traced
back to nondecaying edge modes occurring for � > 1 [63,64].
As the occurrence of long-time tails in Fig. 3(b) seems to
correlate with the degree of disagreement in Fig. 7, we can
identify the breakdown of the assumption as the origin.

FIG. 6. Comparison of the solution of the Lindblad equation,
as obtained numerically from stochastic unraveling (SU) and time-
evolving block decimation (TEBD), for the Hamiltonian H ′ in Eq. (3)
with (a) � = 0.5, (b) � = 1.0, and (c) � = 1.5 as well as N = 20,
open boundary conditions, γ /J = 0.1, and μ = 0.1.

For � = 0.5, where the assumption is fulfilled best, we
next increase the system size to N = 34 � 20. For such a
system size, the Hilbert-space dimension becomes huge, and
stochastic unraveling is no longer feasible due to the many
trajectories required. However, the prediction can still be car-
ried out since the two correlation functions 〈Sz

r (t )Sz
B1

(0)〉eq

and 〈Sz
r (t )Sz

B2
(0)〉eq need to be calculated only once. In par-

ticular, this calculation is possible with the use of dynamical
quantum typicality and supercomputers. In Fig. 8, we depict
the corresponding prediction and make a comparison to the
TEBD solution, which up to times tJ ≈ 50 does not depend on
the bond dimension used. (A convergence analysis of TEBD
can be found in Appendix A.) The convincing agreement
supports the idea that our prediction is a useful alternative
for large system sizes, which are usually accessible by only
matrix-product states.

Unfortunately, our assumption is not always satisfied for
open boundary conditions, as discussed above. Hence, we
explore possibilities to circumvent this problem. To this end,
we consider the slightly different bath-coupling geometry in
Fig. 1(c), where the Lindblad operators are not located exactly
at the edges, but close to them. As depicted in Fig. 9(a), the
equal-site correlation function 〈Sz

r (t )Sz
r (0)〉eq tends to decay

more strongly when the site r is moved away from the left
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FIG. 7. The same as Fig. 6, but instead of stochastic unraveling,
a comparison between the prediction (labeled “Eq.”) and time-
evolving block decimation (TEBD).

edge r = 1, indicating a higher degree of equilibration. In-
deed, for the so far worst case � = 1.5, the prediction for the
open-system dynamics in Fig. 9(b) agrees substantially better
with the full stochastic unraveling. This observation supports
the usefulness of other bath-coupling geometries which have
attracted less attention so far.

FIG. 8. The same as Fig. 7(a), but now for system size N = 34 �
20, where stochastic unraveling is no longer possible.

FIG. 9. Bath coupling close to the edges. (a) Temporal decay
of the autocorrelation function 〈Sz

r (t )Sz
r (0)〉eq for different sites r,

as obtained numerically for the model H ′ in Eq. (3) with � = 1.5,
�′ = 0.5, N = 20, and open boundary conditions. (b) Open-system
dynamics for bath coupling at sites B1 = 3 and B2 = 17. In compar-
ison to the data in Fig. 7(c), the agreement between the prediction
(labeled “Eq.”) and stochastic unraveling (“data”) is better.

C. Staggered field

Finally, we also study other perturbations and turn to the
spin-1/2 XXZ chain with a staggered field, Eq. (4), where
we focus on � = 1.0, B/J = 0.5, and N = 20. In Fig. 10,
we summarize our numerical results. Apparently, the situ-
ation is overall similar. The equal-site correlation function
〈Sz

r (t )Sz
r (0)〉eq in Fig. 10(a) behaves differently for periodic

and open boundary conditions. Consistently, the prediction for
the open-system dynamics agrees well with numerics for the
periodic boundary case in Fig. 10(b), while deviations are visi-
ble for the open boundary case in Fig. 10(c). We have checked
that the situation remains the same for other parameters of �,
although that is not explicitly shown here.

VIII. CONCLUSION

To summarize, we studied the Lindblad equation as a cen-
tral approach to boundary-driven magnetization transport in
spin-1/2 chains. Our main motivation was to understand to
what extent the dynamics in the open system, at finite times
and in the limit of long times, can be predicted on the basis
of the dynamics in a closed system. To that end, we followed
the idea of a previous work [52] which suggested prediction
in terms of spatio-temporal correlation functions, Eqs. (32)
and (35), given the case of weak driving and small system-
bath coupling. While that work focused on integrable systems
and periodic boundary conditions, we substantially extended
the analysis in the current work by going in three different
directions: (1) We considered nonintegrable systems, (2) we
included open boundary conditions and other bath-coupling
geometries, and (3) we provided a comparison with time-
evolving block decimation.
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FIG. 10. Another model: staggered field. (a) Temporal decay
of the autocorrelation function 〈Sz

1(t )Sz
1(0)〉eq for closed and open

boundary conditions, as obtained numerically for the Hamiltonian
H ′′ in Eq. (4) with � = 1.0, B/J = 0.5, and N = 20. (b) and
(c) Open-system dynamics for the respective boundary conditions
as well as γ /J = 0.1 and μ = 0.1. The prediction (labeled “Eq.”) is
compared to either stochastic unraveling (“data”) or time-evolving
block decimation (TEBD).

We found that nonintegrability plays a minor role since
the quality of the prediction is comparable to the one for
integrable systems. This observation is consistent with the
fact that nonintegrability does not enter as an assumption in
the derivation. In contrast, the choice of the specific bound-
ary conditions has turned out to be relevant. For periodic
boundary conditions, on the one hand, prediction and nu-
merical simulations agreed convincingly for all models and
parameters considered here. For open boundary conditions,
on the other hand, we observed some disagreement in par-
ticular cases, which we traced back to slowly decaying edge
modes and thus a breakdown of the equilibration assumption
underlying the prediction. In this context, it is important to
note that the validity of the assumption can be checked in
advance and does not require a comparison to other methods.
To circumvent such edge modes, we also explored other bath-
coupling geometries, in which the Lindblad operators do not
act exactly at the boundary sites, but close to them.

For parameters for which the assumption is well fulfilled
also for open boundary conditions, we demonstrated that the
prediction yields an accurate description and can be carried
out for comparatively large system sizes, which are usually

FIG. 11. Convergence analysis. The data in Fig. 8 are depicted
again for different sites: (a) r = 17, (b) r = 13, (c) r = 9, and
(d) r = 5. But now, the prediction (labeled “Eq.”) is compared to
data from time-evolving block decimation (TEBD) for various bond
dimensions χ . While r = 5 is close to the edge, r = 17 lies in the
bulk.

accessible by only matrix-product-state methods. From a less
practical but more physical perspective, we have thus shown
a kind of one-to-one correspondence between the time evo-
lution in open and closed systems, at least for the models
considered by us.

Promising directions for future research include quasi-one-
dimensional lattices, finite temperatures, energy transport,
fermionic models, and disorder. Another interesting avenue
would be to explore in which cases the slowly decaying edge
modes of the closed system can be enhanced in an open
system [65].
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APPENDIX A: CONVERGENCE OF THE TEBD METHOD

In the main text, we showed in Fig. 8 numerical data from
TEBD and stated that, up to times tJ ≈ 50, it does not depend
on the bond dimension χ used. To further substantiate this
statement, we depict in Fig. 11 the same data for different χ

and various sites, close to the edges and in the bulk. While the
data are particularly well converged close to the edges, some
oscillations can be seen in the bulk, where the time evolution
is kind of close to unitary.

APPENDIX B: CORRELATION FUNCTIONS FOR OPEN
BOUNDARY CONDITIONS

In Fig. 3(b), we show the equal-site correlation function
〈Sz

r (t )Sz
r (0)〉eq for the open boundary case and different �,

where we focus on a single system size, N = 20. To demon-
strate that the temporal decay does not depend significantly
on system size, we additionally depict in Fig. 12(a) numer-
ical data for N = 24. For completeness, Fig. 12(b) shows

FIG. 12. (a) Dynamics of the autocorrelation function
〈Sz

1(t )Sz
1(0)〉eq for open boundary conditions, as depicted in

Fig. 3(b) for different �, but now for two system sizes, N = 20 and
N = 24. (b) Time-space density plot of the correlation functions
〈Sz

r (t )Sz
1(0)〉eq for N = 34 and � = 0.5, which are used for the

prediction in Fig. 8.

the full time-space dependence of the correlation functions
〈Sz

r (t )Sz
r′ (0)〉eq for N = 34 and � = 0.5, which were used for

the prediction in Fig. 8.
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