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and biased measurements of observables. In this work, we address this problem by augmenting the
HMC method with a multiplicative Metropolis-Hastings update in a so-called "radial direction"
of the fields, which enables jumps over the aforementioned potential barriers at comparably
low computational cost. The effectiveness of this approach is demonstrated for the Hubbard
model, formulated in a non-compact space by means of a continuous Hubbard-Stratonovich
transformation. Our numerical results show that the radial updates successfully resolve the
ergodicity violation, while simultaneously reducing autocorrelations.
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1. Introduction

The Hybrid Monte Carlo (HMC) method [1] is one of the most successful tools in the simulation
of lattice field theories. However, despite its many advantages, its application often faces challenges
due to manifolds of vanishing fermion determinant and the concomitant emergence of infinite
potential barriers. These potential barriers lead to diverging force terms in the molecular dynamics
(MD) evolution and, when separating regions in configuration space, result in an ergodicity violation
of the algorithm. A prime example for such a system is the Hubbard model, formulated in a non-
compact space by means of a continuous Hubbard-Stratonovich (HS) transformation. In the adopted
formulation, the occurring fermion determinant vanishes on manifolds of codimension 1 and causes
a formal ergodicity problem in HMC simulations [2]. Thus, a sensible application of HMC
necessitates the development of strategies to circumvent the potential barriers, which, in the context
of the Hubbard model, has been discussed in great detail in [3]. In this work, we propose another
method, which interleaves the HMC simulation with so-called radial updates. Radial updates refer
to multiplicative Metropolis-Hastings (MH) updates in a radial direction of the non-compact fields,
that enables jumps over the aforementioned potential barriers at comparably low computational
cost.

In the following sections, we commence by introducing the Hubbard model in Section 2 and
discuss ergodicity violations of the HMC due to the emergence of potential barriers. Afterwards,
in Section 3, we define the radial updates, before applying them to the simulation of the Hubbard
model in Section 4. Finally, in Section 5, we conclude with a summary and provide an outlook on
potential future avenues.

2. Hubbard model

The Hubbard model is commonly used to describe strongly-correlated electrons in a variety
of condensed matter systems. We use the formulation of the Hubbard model in the so-called
particle/hole basis, where the Hubbard Hamiltonian on a spatial lattice with 𝑁𝑥 sites is given by

𝐻 = 𝐻𝐾 + 𝐻𝑈 = −𝜅
∑︁
⟨𝑥,𝑦⟩

(
𝑎†𝑥𝑎𝑦 − 𝑏†𝑥𝑏𝑦

)
+ 𝑈

2

∑︁
𝑥

(
𝑎†𝑥𝑎𝑥 − 𝑏†𝑥𝑏𝑥

)2
. (1)

The Hamiltonian contains a nearest neighbor hopping term with the hopping parameter 𝜅 and an
on-site interaction with interaction strength𝑈. The fermionic operator 𝑎†𝑥 , (𝑎𝑥) creates (annihilates)
a spin-↑ electron at the lattice site 𝑥. On the other hand, the operator 𝑏†𝑥 , (𝑏𝑥) creates (annihilates)
a spin-↓ electron-hole at the lattice site 𝑥. The partition function and expectation value of an
observable O are given by the thermal traces

𝑍 = tr
(
𝑒−𝛽 (𝐻𝐾+𝐻𝑈 )

)
and ⟨O⟩ = 𝑍−1tr

(
O𝑒−𝛽 (𝐻𝐾+𝐻𝑈 )

)
. (2)

The application of the HMC method requires transitioning from the thermal traces (2) to a path
integral formulation, which is achieved by first discretizing the inverse temperature 𝛽 into 𝑁𝑡 time
slices with lattice spacing Δ𝑡 = 𝛽/𝑁𝑡 and performing a second order Suzuki-Trotter decomposition.
This introduces an error of O(Δ2

𝑡 ) and thus necessitates taking the continuum limit 𝑁𝑡 → ∞
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to recover the exact expression. Applying a continuous HS transformation then decouples the
many-body interactions at the cost of introducing a non-compact auxiliary bosonic field 𝜙. Finally,
inserting fermionic coherent states and integrating out the fermionic degrees of freedom leads to
the Hubbard action

𝑆[𝜙] = 1
2𝑈Δ𝑡

∑︁
𝑡 ,𝑥

𝜙2
𝑡 𝑥 − log (det 𝑀 [𝜙|𝜅] det 𝑀 [−𝜙 | − 𝜅]) , (3)

with the fermion matrix

𝑀 [𝜙|𝜅]𝑡 𝑥,𝑡 ′𝑦 = 𝛿𝑡 ,𝑡 ′𝛿𝑥,𝑦 −
(
𝑒𝜅ℎ

)
𝑥𝑦

𝑒𝑖𝜙𝑡𝑥B𝑡 ′𝛿𝑡 ′ ,𝑡+1. (4)

Here, ℎ = Δ𝑡𝛿⟨𝑧,𝑧′ ⟩ is the hopping matrix and B𝑡 encodes the anti-periodic boundary conditions
with B𝑡 = +1 for 0 < 𝑡′ < 𝑁𝑡 and B0 = −1. For a more detailed derivation of the Hubbard action
(3) and similar formulations we refer the reader to [3, 4].

It was shown in [2, 3] that the fermion matrix (4) vanishes on manifolds with codimension
1, i.e. on manifolds with dimension 𝑑 − 1 in the 𝑑-dimensional configuration space. This gives
rise to infinite potential barriers that separate regions in configuration space, and if the evolution
of the molecular dynamics equations attempts to pass them, the force term 𝐹 [𝜙] = − 𝜕𝑆

𝜕𝜙
diverges.

Therefore, the evolution is always repelled when approaching the potential barrier and the algorithm
can not cross over into the separated region, resulting in an ergodicity violation. Thus, to obtain
correct results, strategies for circumventing the potential barriers have to be developed and recent
approaches are e.g. the complex reformulation [5–7], coarse MD integration [3], using an operator
with the same continuum limit but worse symmetry properties [3], or utilizing novel generative
machine learning architectures [8]. In this work, we adopt the approach of using a non-Hamiltonian
MH update to enable jumps over the potential barriers. Specifically, we employ so-called radial
updates, which will be introduced in the next section.

3. Radial Updates

Radial updates were proposed in Ref. [9] and optimised in Ref. [10]. Here, they refer to a
multiplicative Metropolis-Hastings (MH) update of a non-compact bosonic field 𝜙 = (𝜙1, . . . , 𝜙𝑑)
that generates a new proposal by scaling the radius in field space

𝑅 =

√√√
𝑑∑︁
𝑖=1

𝜙2
𝑖
. (5)

The radial updates are a special case of the updates used in more general multiplicative MH
algorithms, such as the Random dive MH algorithm [11] and the Transformation-based Markov
chain Monte Carlo method [12]. However, instead of devising a new multiplicative MH algorithm,
we propose to augment a standard HMC simulation with intermediate radial updates. This combined
algorithm addresses the ergodicity problems of the standalone HMC at low computational cost,
while also maintaining its favorable properties. The radial update procedure is defined as follows:

1. Given the initial configuration 𝜙 = (𝜙1, . . . , 𝜙𝑑), an update variable 𝛾 is sampled from a
zero-centered normal distribution N(𝛾 |𝜇 = 0, 𝜎2

𝑅
) with standard deviation 𝜎

𝑅
.
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2. A new configuration 𝜙′ is generated by multiplying the initial configuration 𝜙 with 𝑒𝛾 , i.e.

𝜙′ = (𝑒𝛾𝜙1, . . . , 𝑒
𝛾𝜙𝑑). (6)

This amounts to rescaling the radius of the initial configuration to 𝑅′ = 𝑒𝛾𝑅, giving rise to the
term radial update. The scaling factor 𝑒𝛾 follows a log-normal distribution with a median of
one, ensuring that increases and decreases in the radius are proposed with equal probability.

3. The new configuration 𝜙′ is used as a trial configuration in a Metropolis acceptance test with
acceptance probability

𝛼𝑅 = min
(
1, 𝑒−Δ𝑆+𝑑𝛾

)
, (7)

where Δ𝑆 = 𝑆[𝜙′] − 𝑆[𝜙] is the difference in action. Additionally, due to the multiplicative
nature of the radial updates, the acceptance probability comprises a factor of 𝑒𝑑𝛾 , stemming
from the Jacobian of the transformation. Notably, in this setup, the acceptance probability
is independent of the normal distribution used to sample 𝛾, and therefore independent of 𝜎𝑅
(except indirectly).

The radial updates satisfy the detailed balance condition, and therefore the combined algorithm of
radial updates and HMC does as well. Furthermore, in the combined algorithm, the radial updates
resolve possible ergodicity problems of the HMC by enabling jumps over potential barriers. In
practice, employing radial updates requires additional design choices in comparison to a standalone
HMC simulation. These include selecting the standard deviation 𝜎𝑅 and determining the frequency
with which each type of step is applied. Throughout this work, we will specify the latter by defining
the ratio of HMC steps to the number of radial update steps in a combined update step.

4. Results

In this section, we apply the combined algorithm of HMC and radial updates, as introduced
in Section 3, to simulate the Hubbard model (3). Specifically, we demonstrate the algorithm’s
effectiveness in overcoming ergodicity issues caused by potential barriers, as discussed in Sec-
tion 2. To achieve this, we examine the 2-site model, investigating autocorrelation times and the
optimization of the additional parameter 𝜎𝑅. We then analyze how the method scales with growing
dimensionality by increasing the number of time slices 𝑁𝑡 . The simulations were performed using
the Nanosystem Simulation Library [13] and the data analysis was performed using the comp-avg
tool [14].

4.1 Restoring ergodicity in the 2-Site model

We begin by examining a 2-site model on a single time slice, which allows for a direct
visualization of the configurations 𝜙 = (𝜙1, 𝜙2) and the ergodicity problems posed by the infinite
potential barriers. We simulate the model using 𝑈 = 18, 𝜅 = 1 and 𝛽 = 1, employing both the
standalone HMC and HMC augmented with radial updates. In this and in all following simulations,
the MD integration is performed using the Leapfrog integrator with the trajectory length set to

𝑇 =
𝜋

2
√︁
𝑈𝛽/𝑁𝑡 , (8)
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Figure 1: HMC configurations (dots) for the 2-site model on a single time slice (𝑁𝑡 = 1) for 𝑈 = 18, 𝛽 = 1
and 𝜅 = 1. The configurations are compared to the exact unnormalized distribution, shown as a contour
plot. The HMC simulations were conducted with 𝑇 = 𝜋

2

√︁
𝑈𝛽/𝑁𝑡 and 𝑁MD = 60, achieving an acceptance

rate > 99%. The left panel shows the simulation without radial updates, while the right panel includes
radial updates. In the latter, a single radial update was performed before each HMC step with a proposal
standard deviation of 𝜎𝑅 = 1.84. Each panel shows 105 of the 𝑁conf = 2× 105 recorded configurations, with
measurements taken after each HMC step. The plots at the margins compare the exact marginal distribution
to the histograms obtained from the visualized trajectories, respectively.

which eliminates autocorrelations originating from the harmonic part of the action [15]. Further-
more, throughout this work, the number of molecular dynamics steps is always tuned to obtain a fine
integrator with acceptance rate > 99%, leading to 𝑁md = 60 in the present simulation. We record
𝑁config = 2 × 105 configurations, saving the configuration after each HMC step. In the simulation
with radial updates, we employ one radial update per HMC step with standard deviation 𝜎𝑅 = 1.84.

The first 105 configurations in the Markov chain are visualized in Figure 1. Without radial
updates, shown in the left panel, the HMC becomes trapped within the middle diagonal band in
configuration space, which is separated from the adjacent bands by the aforementioned infinite
potential barriers. As a result, the simulation fails to sample regions of high probability in the
adjacent bands, leading to a severe ergodicity problem. However, when radial updates are activated,
as shown in the right panel of Figure 1, the ergodicity violations are resolved entirely. This
qualitative observation is further supported when histograms of the recorded configurations are
compared to the exact marginal distributions, as depicted at the margins of the two plots in Figure 1.
Without radial updates, the middle peak at 𝜙𝑖 = 0 is heavily oversampled in this example. However,
when radial updates are employed, the simulation closely aligns with the exact distribution.

Next, we increase the dimensionality 𝑑 of the simple two-site model by increasing the number
of time slices 𝑁𝑡 , while keeping the parameters 𝑈, 𝛽 and 𝜅 fixed. In this scenario, the potential
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Figure 2: HMC configurations (dots) for the 2-site model with 𝑁𝑡 = 8 for 𝑈 = 18, 𝛽 = 1 and 𝜅 = 1. The
configurations Φ = (Φ1,Φ2) with Φ𝑥 =

∑
𝑡 𝜙𝑡 𝑥 are compared to the exact one-site distribution, recovered in

the strong-coupling limit𝑈/𝜅 ≫ 1 and shown as a contour plot. The HMC simulations were conducted with
𝑇 = 𝜋

2

√︁
𝑈𝛽/𝑁𝑡 and 𝑁MD = 60, achieving an acceptance rate > 99%. The left panel shows the simulation

without radial updates, while the right panel includes radial updates. In the latter, a single radial update was
performed before each HMC step with a proposal standard deviation of 𝜎𝑅 = 1.84. Each panel shows 105

of the 𝑁conf = 3 × 105 recorded configurations, with measurements taken after each HMC step. The plots
on the margins compare the marginal one-site distribution to the histograms obtained from the visualized
trajectories, respectively.

barriers in configuration space can be visualized by considering Φ𝑥 =
∑
𝑡 𝜙𝑡 𝑥 , because in the

strong-coupling limit 𝑈/𝜅 ≫ 1, the probability weights of a configuration Φ = (Φ1,Φ2) are well-
approximated by the exact one-site distribution given in [3]. We first examine the exemplary case
of 𝑁𝑡 = 8 by visualizing the first 105 of a total of 𝑁conf = 3 × 105 recorded configurations, both
without and with radial updates. In the simulation with radial updates we employ one radial update
with standard deviation 𝜎𝑅 = 0.555 per HMC step. The results are shown in Fig. 2. Similarly to
the 𝑁𝑡 = 1 case, we observe that without radial updates, the trajectory remains trapped within the
middle diagonal band in the two-dimensional Φ-plane, whereas, with radial updates, the algorithm
efficiently explores the entire configuration space, thereby restoring ergodicity.

4.2 Autocorrelations, parameter tuning and scaling

In the next phase of our analysis, we examine the influence of the radial updates on autocorre-
lations and utilize the integrated autocorrelation time to optimize the proposal standard deviation
of the radial updates, while also exploring their scaling properties. We begin by computing the
integrated autocorrelation time 𝜏int for the 2-site model with 𝑁𝑡 = 1 as a function of the standard
deviation 𝜎𝑅. For a comprehensive introduction to the estimation of errors and autocorrelation
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Figure 3: Integrated autocorrelation time 𝜏int for the observables OΦ (left) and O𝑄 (right), defined in (9), as
a function of the proposal standard deviation 𝜎𝑅. The underlying model is the 2-site model on a single time
slice (𝑁𝑡 = 1) for 𝑈 = 18, 𝛽 = 1 and 𝜅 = 1. The HMC simulations were conducted with 𝑇 = 𝜋

2

√︁
𝑈𝛽/𝑁𝑡 and

𝑁MD = 60, achieving an acceptance rate > 99%. Each HMC step was preceded by a single radial update and
a total of 𝑁conf = 2 × 105 configurations were recorded, with measurements taken after each HMC step.

functions, we refer the reader to [16]. The observables that we consider are the net charge of the
system O𝑄 and the heuristically motivated Φ-plane radius OΦ, defined by

O𝑄 =
1
𝑑

∑︁
𝑡 ,𝑥

𝜙𝑡 𝑥 and OΦ =

√√√∑︁
𝑥

(∑︁
𝑡

𝜙𝑡 𝑥

)2

. (9)

The results are depicted in Fig. 3, where we observe that 𝜏int initially decreases as 𝜎𝑅 increases,
reaches a minimum, and then starts to rise. To describe the dependence of the integrated autocor-
relation time on the proposal standard deviation 𝜎𝑅, we adopt the fitting ansatz

𝜏int(𝜎𝑅) = 𝑎𝜎−2
𝑅 + 𝑏 + 𝑐𝜎𝑅 . (10)

In this expression, the first term accounts for the expected random walk behavior at small 𝜎𝑅,
resulting in a diffusive regime with 𝜏int ∝ 𝜎−2

𝑅
. The third term quantifies the large 𝜎𝑅 regime where

proposed steps are large and the autocorrelation time increases with decreasing acceptance rate,
such that 𝜏int ∝ 𝜎

𝑅
. The extrapolation is displayed in Fig. 3 and throughout this work, fit results

are obtained by fitting the respective ansatz to 𝑁boot = 103 bootstrap samples of the measured
data. The results clearly indicate that the chosen ansatz effectively captures the behavior of the
data and, additionally, it enables the sensible estimation of the position of the minimum 𝜎

(min)
𝑅

. To
examine the scaling behavior of the radial updates, we conduct simulations across several values
of 𝑁𝑡 and repeat the previous analysis. The respective estimates for 𝜎 (min)

𝑅
and the values for the

integrated autocorrelation time at the minimum, denoted by 𝜏
(min)
int , are shown in Fig. 4. Theoretical

considerations suggest that the position of the minimum should scale as 𝜎 (min)
𝑅

(𝑑) ∝ 𝑑−0.5+O(𝑑−1)
at leading order [10], motivating the fit-model 𝜎 (min)

𝑅
(𝑑) = 𝛼𝑑𝛽 . We find that the extrapolation of
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Figure 4: The left panel shows the position of the minimum 𝜎
(min)
𝑅

of the fit ansatz (10) as a function of
dimensionality 𝑑 = 𝑁𝑥𝑁𝑡 , along with bootstrapped fits using the model 𝜎 (min)

𝑅
= 𝛼𝑑𝛽 . The right panel

illustrates the integrated autocorrelation time at this minimum, denoted by 𝜏
(min)
int , also as a function of

dimensionality 𝑑, with corresponding bootstrapped fits using the model 𝜏 (min)
int = 𝛼𝑑𝛽 . Both panels display

results for the 2-site model with varying 𝑁𝑡 for 𝑈 = 18, 𝛽 = 1 and 𝜅 = 1.

our numerical results closely matches the predicted theoretical 𝑑−0.5-scaling for both observables.
To determine the leading order scaling of the minimal integrated autocorrelation time, we apply the
same fit-model 𝜏 (min)

int (𝑑) = 𝛼𝑑𝛽 , resulting in an almost linear leading order scaling of the minimal
integrated autocorrelation time with the dimension 𝑑.

5. Summary and Outlook

In this work, we demonstrated that the augmentation of HMC with radial updates successfully
resolves ergodicity violations of a standalone HMC in the Hubbard model. Furthermore, the radial
updates reduce autocorrelation times. We also discussed the scaling and tuning of additional
parameters. Due to the global multiplicative nature of the radial updates, their utilization is
computationally inexpensive compared to the HMC itself.

In future research, we aim to investigate the scaling properties of radial updates further by
extending our analysis to simulations of larger, more realistic systems, such as the simulation of
Perylene [17]. Additionally, performing a realistic simulation also involves utilizing a coarser MD
integrator, which leads to energy violations in the integration that also enable tunnelling through
potential barriers. The employment of radial updates also has great implications for the geometrical
convergence of HMC on non-compact manifolds, which will be subject to future work.
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