Home > Publications database > Scaling data-intensive analytics with Heat: a Python library for massively-parallel array computing and machine learning > print |
001 | 1034687 | ||
005 | 20250113214946.0 | ||
037 | _ | _ | |a FZJ-2024-07444 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Comito, C. |0 P:(DE-Juel1)174573 |b 0 |u fzj |
111 | 2 | _ | |a Helmholtz AI Conference |c Düsseldorf |d 2024-06-12 - 2024-06-14 |w Germany |
245 | _ | _ | |a Scaling data-intensive analytics with Heat: a Python library for massively-parallel array computing and machine learning |
260 | _ | _ | |c 2024 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1736768485_16364 |2 PUB:(DE-HGF) |x After Call |
520 | _ | _ | |a Handling and analyzing massive data sets is highly important for the vast majority of research communities, but it is also challenging, especially for those communities without a background in HPC. The Helmholtz Analytics Toolkit (Heat) library offers a solution to this problem by providing memory-distributed and hardware-accelerated array manipulation, data analytics, and machine learning algorithms in Python, targeting the usage by non-experts in HPC. In short: Heats objective is to make array computing and machine learning as easy on a CPU/GPU-cluster as it is on a workstation.Our poster provides an overview of Heats design principles, its current features and capabilities, and discusses its role in the ecosystem of distributed array computing and machine learning in Python. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 1 |
536 | _ | _ | |a SLNS - SimLab Neuroscience (Helmholtz-SLNS) |0 G:(DE-Juel1)Helmholtz-SLNS |c Helmholtz-SLNS |x 2 |
700 | 1 | _ | |a Gutiérrez Hermosillo Muriedas, J. P. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Götz, M. |0 P:(DE-Juel1)162390 |b 2 |
700 | 1 | _ | |a Hagemeier, B. |0 P:(DE-Juel1)132123 |b 3 |u fzj |
700 | 1 | _ | |a Hoppe, F. |0 P:(DE-HGF)0 |b 4 |e Corresponding author |
700 | 1 | _ | |a Knechtges, P. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Krajsek, K. |0 P:(DE-Juel1)129347 |b 6 |u fzj |
700 | 1 | _ | |a Rüttgers, Alexander |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Tarnawa, M. |0 P:(DE-Juel1)178977 |b 8 |u fzj |
909 | C | O | |o oai:juser.fz-juelich.de:1034687 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)174573 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)132123 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)129347 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)178977 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 1 |
914 | 1 | _ | |y 2024 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a poster |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|