001     1034687
005     20250113214946.0
037 _ _ |a FZJ-2024-07444
041 _ _ |a English
100 1 _ |a Comito, C.
|0 P:(DE-Juel1)174573
|b 0
|u fzj
111 2 _ |a Helmholtz AI Conference
|c Düsseldorf
|d 2024-06-12 - 2024-06-14
|w Germany
245 _ _ |a Scaling data-intensive analytics with Heat: a Python library for massively-parallel array computing and machine learning
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1736768485_16364
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Handling and analyzing massive data sets is highly important for the vast majority of research communities, but it is also challenging, especially for those communities without a background in HPC. The Helmholtz Analytics Toolkit (Heat) library offers a solution to this problem by providing memory-distributed and hardware-accelerated array manipulation, data analytics, and machine learning algorithms in Python, targeting the usage by non-experts in HPC. In short: Heats objective is to make array computing and machine learning as easy on a CPU/GPU-cluster as it is on a workstation.Our poster provides an overview of Heats design principles, its current features and capabilities, and discusses its role in the ecosystem of distributed array computing and machine learning in Python.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 1
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 2
700 1 _ |a Gutiérrez Hermosillo Muriedas, J. P.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Götz, M.
|0 P:(DE-Juel1)162390
|b 2
700 1 _ |a Hagemeier, B.
|0 P:(DE-Juel1)132123
|b 3
|u fzj
700 1 _ |a Hoppe, F.
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
700 1 _ |a Knechtges, P.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Krajsek, K.
|0 P:(DE-Juel1)129347
|b 6
|u fzj
700 1 _ |a Rüttgers, Alexander
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Tarnawa, M.
|0 P:(DE-Juel1)178977
|b 8
|u fzj
909 C O |o oai:juser.fz-juelich.de:1034687
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174573
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)178977
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 1
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21